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Some driving behaviors may have dramatic impacts on the fuel consumption. We are investigating the
eco-driving strategy from speed profiles in GPS trajectories. Each profile is a time series recording the
real-time speed of a vehicle. Let it be x = {(t1,s1), (t2,s2), . . . , (tn,sn)} ∈ X , where ti is the timeframe and
si ∈ S is the accompanied non-temporal state at ti , and the time duration of the profile x is Tx = tn − t1 > 0,
which may be in minutes or hours and n is the number of recorded entries. The time series may have
varied lengths and are allowed to be unevenly distributed in the time space, i.e. the short time durations
in {t2 − t1, t3 − t2, . . . , tn − tn−1} may be distinct. To be simple, we assume that the time series is in unit
second. To measure the fuel usage based on the speed profile, an energy consumption function is defined
as C : X → R+. Given a speed profile of any length, it’s able to produce a reliable estimation of the average
energy consumption of the profile.

Given a sample x ∈ X with sparse records, for instance n = 2 and Tx = 1 minutes. A data imputation
technique A will be deployed to fill in the missed records at a higher resolution τ , say 1 seconds. We
evaluate A based on the fuel consumption

MA = P
{
|C(A(x))−C(x∗)| ≤ ϵ

}
, (1)

where 0 < ϵ≪ 1, and x∗ is a sample drawn from the GPS data set, x is a sparser sequence with many missed
records. A higherMA implies a better imputation technique A.

Two simple imputation techniques are evaluated in the report:

• Straight Line: Let z = A(x), and g = (sn − s1)/Tx be the slope or the gradient in unit time, then
z1 = (t1,s1),z2 = (t1 + τ ,s1 + g), . . . ,zm = (t1 + (m − 1)τ ,s1 + (m − 1)g),zm+1 = (tn,sn). Here, it’s
assumed that n= 2 and Tx =mτ .

• Straight Line With Random Perturbation: Based on the above straight line imputation, a random
perturbation is imposed over the imputed data, i.e. zk = (t1+(k−1)τ ,s1+(k−1)g+r), k = 2,3, . . . ,m,
z1 = (t1,s1) and zm = (tn,sn). The random variable r ∼Q(r), whereQ could be a uniform distribution
Q(r) ∼ U (0,1) to be the relative deviation from the straight line imputation, e.g. r = 0.1 is less or
greater than the imputed value, or it is the probability distribution of deviation from the straight line
imputation in the empirical data set, as illustrated in Fig. 1.
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Fig. 1: Probability distribution of speed deviation from linear interpolation of varied time-lengths: 1, 2 and
5 minutes.

There are many different energy consumption functions that can be used. One is defined as

C(si) = C({vi ,mi}) =


a× exp{b1 + (c1 × lnvi)}vi , lnvi < 3.75 and mi = 1,
a× exp{b2 + (c2 × lnvi)}vi , lnvi ≥ 3.75,

0, else.
(2)

where vi is the instantaneous speed of the truck, a= 8.80618107×10−5/(3600×1.60934) = 1.519978×10−8,
b1 = 8.185202+ 0.002580905/2 = 8.1864924525, b2 = 3.178949+ 0.002580905/2 = 3.1802394525,c1 =
−0.480677− 0.069 = −0.549677, c2 = 0.8072496− 0.0546 = 0.7526496. The energy consumption function
C(x) =

∑n
i=1C(si) relies on the speed and the variable Movement mi . To be simple, we simply put all

imputed the same value, i.e. setting Movement to be 1.

Another energy consumption function used in our simulation comes from the vehicle emission model pro-
posed by Emrah Demir and his colleagues1, which estimates the tractive power requirements (kw)

Ptract = (M × a+M × g × sinθ+ 0.5CdρAv
2 +MgCr cosθ)v/1000.

where v is the speed (m/s), andM is the weight (kg), with ρ is the air density in kg/m3 (typically 1.2041), A
is the frontal surface area in m2 (typically between 2.1 and 5.6), and g is the gravitational constant in m/s2

(typically 9.81). In addition, Cd is the coefficient of aerodynamic drag (typically 0.7), and Cr the coefficient
of rolling resistance (typically 0.01). Here, we choose M = 5000 kg, A = 5.6 and θ = 0. To translate the
tractive requirement into engine power requirement, we calculate

P = Ptract/ηtf

where ηtf is the vehicle drive train efficiency (typically 0.4). It’s known that 1 gallon of gas can produce
energy of about α = 33.410107 kwh. Therefore, we can define an alternative energy consumption function

C(si) =
(Mai + 0.5CdρAv

2
i +MgCr)vi

3.6αηtf × 106
. (3)

It relies on the acceleration rate ai , which is calculated from the change in speed, as a result we have

C(x) =
n−1∑
i=1

C(si).
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We select a speed profile of one specific route as described in Fig. 2 (Upper), and calculate the related
instantaneous (Middle) and cumulative energy consumption (Lower) with the two designed energy con-
sumption functions introduced in the above paragraphs. The two curves indicates the two functions in
essential are the same. We also notice that the instantaneous fuel consumption presents similar pattern as
the speed profile. To measure the similarity, we calculate the cosine similarity of the two, and find that
value is as as high as cos(v,c) ≈ 0.99. In other words, the energy consumption functions heavily rely on the
speed.

Two simulation schemes are conduct, one over all possible episodes that take 1, 2 and 5 minutes Tx =

60s,120s,300s to run, which has overlapping episodes, while another over all non-overlapping episodes
that take 1, 2 and 5 minutes’ driving time. Scheme 1 is applying the imputation techniques over a moving
sliding window in the driving profile, the size of the sliding window could be 1, 2 and 5 minutes. Once a
sliding window has been done, then move to the next one. Scheme 2 split the entire driving history into
multiple cells of equal size, each cell is corresponding to a short driving profile of length 1, 2 or 5 minutes.

The simulations are evaluated with the fuel consumption saving due to the imputation techniques relative
to the real fuel consumption. The evaluations are reported in Fig. 3 and 4. Because the two fuel consump-
tion functions are essentially the same, hereinafter the fuel consumption is calculated using the first fuel
consumption function.

Fig. 3 reports the instantaneous fuel consumption saving following the trajectory generated from the impu-
tation techniques, when compared against with the real fuel consumption of all 12 routes under scheme 1,
and Fig. 4 reports the same result under scheme 2. According to the simulation, the two simple imputation
techniques have no significant difference when compared against each other, and both give good imputa-
tion to the original records. Under scheme 1, let ϵ = 0.01, MA > 0.95 when Tx = 60, MA ≈ 0.77 when
Tx = 120, andMA ≈ 0.51 when Tx = 300 for both techniques. Under scheme 2, let ϵ = 0.001,MA > 0.99
when Tx = 60,120 or 300 for both techniques. No matter under which simulation scheme, the sparser the
samples become, the worse the imputation tend to be, as the gap becomes larger. According to the range
the fuel consumption saving, scheme 1 is much greater than scheme 2, because it evaluates all possible
short route of specific time length.

The random perturbation imputation makes a perturbation over the straight line imputation. The pertur-
bation could be uniform distributed or collected from the empirical data. To make a comparison, we also
report the results based on the empirical distribution (see Fig. 1) in Fig. 5. Overall, the empirical distribu-
tion does not provide much information to improve the imputation results w.r.t the fuel consumption.

To have a close examine the performance of the imputation techniques, we illustrate the instantaneous fuel
consumption in Fig. 6 of all 12 routes w.r.t the real speed profile, the imputed speed profile with straight
line and straight line based random perturbation of 2 minutes length, and the corresponding cumulative
fuel consumption of one individual route in Fig. 7.
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Fig. 2: Speed Profile of a Truck (Upper), Instantaneous Fuel Consumption (Middle) and Its Curve of Cu-
mulative Fuel Consumption (Lower) on One Specific Route
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Fig. 3: Instantaneous fuel consumption saving due to the imputation techniques relative to the ground
truth consumption of all 12 routes under simulation scheme 1. Each column is corresponding to a time-
length when employing the imputation technique (Straight Line in row 1 and Random Perturbation in row
2). Three time-lengths are examined, they are 1-minute, 2-minute and 5-minute.

Fig. 4: Instantaneous fuel consumption saving due to the imputation techniques relative to the ground
truth consumption of all 12 routes under simulation scheme 2. Each column is corresponding to a time-
length when employing the imputation technique (Straight Line in row 1 and Random Perturbation in row
2). Three time-lengths are examined, they are 1-minute, 2-minute and 5-minute.
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Fig. 5: Instantaneous fuel consumption saving due to the imputation techniques relative to the ground
truth consumption of all 12 routes under simulation scheme 2. The perturbations are drawn from the
empirical distribution.
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Fig. 6: Instantaneous Fuel Consumption on Ground Truth Speed Profile, Imputed Profile with Straight
Linear and Straight Linear based Random Perturbation Imputation Techniques (120s) for All 12 Routes
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Fig. 7: Cumulative Fuel Consumption of 2-Minute Short Trip, Upper: Real Consumption, Middle: Con-
sumption for Linear Imputed Profile and Lower: Consumption for Random Perturbation Imputed Profile.
The x-axis represents the start time index of each short trip.
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