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Ranking aggregation is an important approach to combine information and reach an
agreement between various opinions. There are many applications, such as election to
select a winner from a pool of candidates based on voters’ preference profile, or produce
a full ranking or preference rate over a set of web pages or online movies from users’
visiting log or historical ratings. The report proposed two voting rules – pairwise margin
voting rule and probabilistic propagation-based voting rule. Both methods can capture
the absolute and relative position information. Also, we present some evaluation results
of the two methods to illustrate some good properties. We implemented a meta search en-
gine, where the proposed pairwise margin is employed to aggregate the searching results
from some individual search engines.

1 Notation

• C = {c1, c2, . . . , cm} – the alternatives, candidates, agents or web pages set.

• Π(C) = {σ1, σ2, . . .} – the set of the preference rankings (full or partial) over C.

• P = {π1, . . . , πn|πi ∈ Π(C), 1 ≤ i ≤ n}, – a preference profile from a set of voters.

• π(i) – the position of ci ∈ C in π ∈ Π(C).

• m, n – the number of candidates and voters.

Ranking aggregation is a social welfare function r and produce an integrated result π∗

from a set of known preference rankings P, i.e π∗ = r(P). The optimal Kemeny ranking
is commonly used to evaluate the performance of an aggregation method, and we expect
the combined result π∗ is or at least very close to the optimal Kemeny ranking over P, i.e.
π∗ ≈dKL argmin

σ∈Π(C)
dKL(σ, P).
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2 Problem

We have candidates C = {a, b, c, d, e} and the preference profile of 100 voters

P = {60 : a ≻ b ≻ c ≻ d ≻ e, 20 : a ≻ c ≻ b ≻ d ≻ e, 20 : c ≻ e ≻ a ≻ b ≻ d}.

60 : a ≻ b ≻ c ≻ d ≻ e
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We denote π1 = a ≻ b ≻ c ≻ d ≻ e, π2 = a ≻ c ≻ b ≻ d ≻ e, and π3 = c ≻ e ≻ a ≻ b ≻ d.
Among 100 voters, 60 voters have preference ranking π1, 20 with preference π2 and 20
with π3. Considering a pair of candidates a and b, their relative positions, their posi-
tional difference, and the absolute position of the preferred candidate in three preference
rankings are different, as indicated in Table 1. Condorcet method could capture the rel-
ative positions of all pair of candidates. However, both the positional difference and the
absolute position of the preferred candidate are ignored. Borda rule can evaluate the po-
sitional difference and the relative positions, but the absolute position of the preferred
candidate is not fully considered. We expect to develop a more general voting rule to
capture all three signals. The larger the positional difference between the pair of candi-
dates, the more score the preferred candidate will be able get for winning a head-to-head
competition. Furthermore, the higher the preferred candidate is ranked, the more credits
it can earn.

Table 1: Absolute and Relative Positions

Positions Condorcet Borda
π1(a) = 1, π1(b) = 2 sa − sb = 1
π2(a) = 1, π2(b) = 3 a ≻ b sa − sb = 2
π3(a) = 3, π3(b) = 4 sa − sb = 1

3 Pairwise Margin Voting Rule

We proposed the pairwise margin voting rule, and tried to create a voting model that
capture all three positional features for a pair of candidates: the relative position, the
positional difference, and the absolute position of the preferred candidate.
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Pairwise margin voting rule is a general scoring rule [1] built upon pairwise comparisons.
The rule considered each pairwise competition as a zero-sum game, where a candidate
earns is exactly what anothers’ loss. The amount of credits that a candidate ci gets from
π for winning the pairwise competition with cj is

sπ(i, j) =
π(j)− π(i)

min{π(i), π(j)} , ∀ci, cj ∈ C,

where π(i) is the position of ci in π, and π(i) = 1 is the top-most position. If candidate
ci is ranked ahead of cj, sπ(i, j) > 0; otherwise, sπ(i, j) < 0. If ties are allowed, two tied
candidates will loss and earn nothing when picked out for comparison. Besides, if ci has
no place at all, π(i) = |π|+ 1.

Given a preference ranking π, we therefore can calculate ci’s credit by accumulating all
pairwise loss and benefit, that is

si(π) = ∑
1≤j≤n

π(j)− π(i)
min{π(i), π(j)} , ∀ci ∈ C.

Furthermore, candidate ci can receive the amount si = ∑π∈P(C) si(π) of credits from a
preference profile P(C).

π(i)

π(1)

π(2)

π(3)

...

π(n)

π(j)

Figure 1: Monotonically increasing pairwise margin

Proposition 1. Pairwise margin is monotonically increasing with respect to a candidate’s posi-
tion, i.e.

∀ci ≻π cj, π ∈ Π(C), si(π) > sj(π).

With Fig. 1, here we provide a quick proof. Assuming ci ≻π cj, i.e π(i) < π(j), given
the position π(k) of any ck ∈ C in π, let’s see three nontrivial cases: π(k) < π(i) < π(j),
π(i) < π(k) < π(j) and π(i) < π(j) < π(k).
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• π(k) < π(i) < π(j): both ci and cj are ranked after ck, so π(k)−π(i) > π(k)−π(j),

π(k)− π(i)
min{π(i), π(k)} =

π(k)− π(i)
π(k)

>
π(k)− π(j)

min{π(j), π(k)} =
π(k)− π(j)

π(k)
.

• π(i) < π(k) < π(j): ck is placed between ci and cj. Obviously,

π(k)− π(i)
min{π(i), π(k)} =

π(k)− π(i)
π(i)

> 0 >
π(k)− π(j)

min{π(j), π(k)} =
π(k)− π(j)

π(k)
.

• π(i) < π(j) < π(k): both ci and cj are ranked ahead of ck, so π(k)
π(i) > π(k)

π(j) and

π(k)− π(i)
min{π(i), π(k)} =

π(k)− π(i)
π(i)

>
π(k)− π(j)

min{π(j), π(k)} =
π(k)− π(j)

π(j)
.

We end the proof.

4 Propagation-based Voting Rule

We borrow the idea of PageRank [2] developed by Segery Brin and Larry Page, the co-
founder of Google, propose a propagation model to simulate a dynamic procedure in
voting. The method derives from PageRank and is built upon directed weighted graphs.

4.1 PageRank

PageRank method is a probabilistic simulation of a random web surfer. Suppose the
total number of web pages (or sites) is N, a web surfer is parking on page j, (s)he has to
choose the next stop i to visit. There are two possible behaviors, the web surfer randomly
selects another one from N pages or visits another web page by picking one hyperlinked
web page contained in page j. The expected time a random web surfer visits page i is
computed using the following model

Si ← (1− d)/N + d ∑
j→i

Sj/Nj,

where Si is the PageRank score of page i (or candidate ci in voting case); d is the damping
factor and also the probability of visiting another page via hyperlinks; Nj is the out-degree
of vertex i. There are two terms, the first one measures the expected time of randomly
jumping and the second term indicates the expected time that page i received from visit-
ing along hyperlinks.
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The score of shows a web page’s importance, an item’s popularity or a candidate’s rep-
utation. The importance, popularity or reputation is equally assigned to all outgoing
nodes.

PageRank is built upon an unweighted directed graph, as shown in Fig 4.1 (L), where each
edge is equally important. A page’s score is propagated over the graph until reaching an
equilibrium state.
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Figure 2: PageRank voting graph (L) and weighted majority graph (R)

4.2 Probabilistic Propagation

We derived from a weighted directed graph to simulate the probabilistic propagation of
a web page’s importance, or a candidate’s popularity in election. Let Pr(ci|cj) be the
weight of the edge eij in a directed graph G or a transportation probability from ci to cj.
We propose the following model to depict the propagation of vertices’ importances

Pi =
n

∑
j=1

Pr(ci|cj)Pj,
n

∑
i=1

Pr(ci|cj) = 1, Pr(ci|cj) ∈ [0, 1].

We can get candidates’ scores by solving an eigen-system P = AP, where aij = Pr(ci|cj)
and ∑

i
aij = 1, therefore A is a stochastic matrix, which guarantees a feasible solution [3].

There are numerous ways to create a weighted directed graph and the weighted majority
graph is a common way to present a preference profile - one special preference graph.
This work focus on the preference graph and derives a probabilistic propagation-based
voting method.

Definition 1 (Preference Graph). The preference graph of preference profile P(C) is defined
as a weighted directed graph whose vertices are the candidates C with edges linking all pairs of
candidates. The weight wij of edge eij which links from cj to ci indicates the strength of ci ≻ cj.
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Proposition 2. The weighted majority graph of preference profile P(C) is a preference graph with
non-negative weights wij = N(i ≻ j)− N(j ≻ i) ≥ 0 presenting that the number N(i ≻ j) of
votes that rank ci ahead of cj is no less than the number N(j ≻ i) of votes that rank cj ahead of ci
in the profile P(C).

The proposed propagation model is based on the preference graph, from which we con-
struct a probability distribution over all pairwise preference relations. We derive from all
possible pairwise elections, and formulate the following distribution

Pr(ci|cj) =
σ(wij)

n
∑

k=1
σ(wkj)

, ∀ci, cj ∈ C,

where σ(x) = 1/[1 + e−x]. Let wij = si − sj, we have a propagation-based voting rule
based on pairwise margin voting rule.

5 Evaluation and Application

We enumerated all possible preference profiles of m = 3 candidates from n = {5, 7, 9, . . .}
voters, and conducted two kinds of evaluations: (a) the similarities of the proposed meth-
ods to Kemeny-Young method, (b) the satisfiabilities to some popular fairness criteria us-
ing the approach suggested by Lirong Xia [4]. Moreover, we also implemented a meta
search engine with Google, Yahoo!, Ask, Baidu, Bing and Blekko as its engine members,
and employed the proposed pairwise margin voting rule to aggregate the top ranked
search results from all these individual search engines.

As indicated in Fig. 3(L), Condorcet method is much similar to the Kemeny-Young method
than all the other voting rules. Based on the observation, we have to admit that the pro-
posed method is not suitable for ranking aggregation based on its similarity to Kemeny-
Young rule. Pairwise margin and Borda rule perform similarly in searching the nearest
ranking to a given preference profile, because they behave similarly in selection a winner
(see Fig. 3 (R)).

An independent general search engine contains four primary components [2, 3]: web
crawler (collect web pages), documents indexer(create forward document-term index-
ing and inverted index of terms), ranker (analysis documents’ signals and rank them us-
ing various ranking algorithms) and searching terminal (parse queries and communicate
with other three components for response). Researches shown that the most well known
search engines have low overlap [5] in searching results and their ranking performances
are different as well. It’s valuable to combine results from multiple sources can provide
more diverse coverage, and to some extend could reduce the distraction from advertises.
There are also disadvantages in a meta search engine. The most obvious one is that most

6



6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.90

0.92

0.94

0.96

0.98

1.00 Borda Rule

Condorcet Method

Pairwise Margin

Propagation-based

6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.88

0.90

0.92

0.94

0.96

0.98

1.00 Condorcet Method

Pairwise Margin

Propagation-based

Figure 3: Comparisons of pairwise margin, propagation-based voting rule, Borda rule
and Condorcet method in terms of similarity to Kemeny-Young (L); Comparisons of pair-
wise margin, propagation-based voting rule and Condorcet method in terms of similarity
to Borda rule (R).
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Figure 4: Comparison between propagation-based voting rule (L) and Borda rule (R) in
terms of satisfiability to popular fairness criteria

meta search engine do not have independent web database, and therefore require longer
waiting time.

The implemented engine is not optimized and only provide basic searching functionality
(see Fig. 5). There are lots of work to do to provide real-time service, including dedu-
plication detection, searching cache, query spelling correction, keywords highlight, etc.
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Figure 5: A screenshot of the meta search engine implemented in Java

6 Conclusion and Future Work

We proposed pairwise margin voting rule to capture all three important positional fea-
tures: the relative position, the positional difference, and the absolute position of the
preferred candidate in head-to-head competition. It has higher satisfiability than Borda
rule to the Condorcet criterion, a very good fairness criterion. Furthermore, we also cre-
ate a general probabilistic propagation-based voting rule based on the idea of PageRank.
It can efficiently give the scores of candidates iteratively and presents a flexible approach
to formulate pairwise preference relation.

The proposed methods are not fully analyzed and require further investigation and com-
parisons with other positional scoring rules and pairwise Condorcet method.
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