Inferring Degrees from Incomplete Networks and Nonlinear Dynamics

C. Jiang, J. Gao, M. Magdon-Ismail

{jiangc4,gaoj8}@rpi.edu, magdon@cs.rpi.edu

Department of Computer Science, Rensselaer Polytechnic Institution, Troy, NY

Problem

Given:

- Incomplete network
- Noisy equilibrium states
- Dynamical system

Goals:

- Infer missing degrees
- Link prediction
- Robustness (sampling, measurement error, model misspecification)

- Ecology Networks: abundances of plants
- Regulatory Networks: expression levels of genes
- Epidemic Networks: infection rates of person

Prior Works

- Degree distribution, average degree, network size (BF1993; STS2008; KLS2011; KBM2012; GR2008; DKS2014; F1980; SW2005; AKM2009; RT2012; ZKS2015)
- Individual node degrees (GK2017)

Main idea: connecting topology to equilibria

GBB2016 (Nature) JGM2020 (AAAI)

Equilibrium Condition

$$f(x_i) + \sum_{j \in V} A_{ij}^{(s)} g(x_i, x_j^*) + \delta_i^{\text{hidden}} g(x_i, x_{\text{eff}}) = 0$$

ZeroTopo

Mean-field Equilibrium Condition

$$f(x_i) + \delta_i^{\text{hidden}} g(x_i, x_{\text{eff}}) = 0$$

Experimental Setting

Dynamics	Network	n	m	$\langle oldsymbol{\delta} angle$	
(a) Ecological (b) Regulatory	Plant Pollinator Genes Network	97 662	972 1062	20.04 3.21	
© Epidemic	Facebook	4039	88234	43.69	
(a) $\dot{x}_i = B + x_i(1 - \frac{x_i}{2})(\frac{x_i}{2} - 1) + \sum_i \frac{x_i x_j A_{ij}}{2}$					

(a)
$$\dot{x}_i = B + x_i (1 - \frac{x_i}{K})(\frac{x_i}{C} - 1) + \sum_j \frac{x_i x_j A_{ij}}{D + E x_i + H x_j}$$

(b) $\dot{x}_i = -B x_i^f + \sum_j A_{ij} R \frac{x_j^h}{x_j^h + 1}$
(c) $\dot{x}_i = -B x_i + \sum_j A_{ij} R (1 - x_i) x_j$

$$\hat{\mathbf{b}} \, \dot{x}_i = -B x_i^f + \sum_j A_{ij} R \frac{x_j^h}{x_i^h + 1}$$

$$\hat{\mathbf{C}} \dot{x}_i = -Bx_i + \sum_j A_{ij} R(\hat{1} - x_i) x_j$$

Inferring Individual Node Degrees

	Method (sampling fraction)			
Network	ZeroTopo	_	TopoPlus+Round	
	(0%)	(10%)	(10%)	
Plant Pollinator	57.7	62.0	62.7	
Genes	86.2	87.1	87.8	
Facebook	59.5	64.1	65.4	

Accuracy: fraction of nodes with error $|\log(\hat{\delta}_i/\delta_i)| < 5\%$

Robustness

Sampling Method

• Measurement Error

Model Error

Comparison: degree estimation

On average 157% improvement over [GK2017]

Network Method	Plant Pollinator	Genes	Facebook
[GK2017]	5.10	19.96	9.00
ZeroTopo (w/ noise)	12.63 (10%)	84.27(10%)	9.19 (9%)

Degree estimation for link prediction

- •Our estimates: 41% improvement over observed degrees
- True degrees: 44% improvement over observed degrees

	AUC			
Method	Plant Pollinator	Genes	Facebook	
[BA1999] + Observed degrees	59.90	58.00	69.44	
[BA1999] + Our estimates	87.11	91.28	83.78	
[BA1999] + True degrees	87.42	92.45	83.83	

- All methods sample 1% of edges
- [BA1999] uses $s_{u,v} = \delta_u \delta_v$ for link prediction
- Our degree estimates with **TopoPlus** assumes no measurement error

Conclusions

- Our degree estimates use equilibrium states
- Accurate estimates even without topology, unlike existing methods
- Robust to sampling method, measurement errors, and model errors
- Our degree estimates significantly enhance link prediction

References

[AKM2009] Dimitris Achlioptas, Clauset, David Kempe, and Cristopher Moore. On the bias of traceroute sampling: or, power-law degree distri- butions in regular graphs. *Journal of the ACM (JACM)*, 56(4):21, 2009.

[BA1999] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks. *Science*, 286(5439):509–512, 1999.

[BF1993] John Bunge and Michael Fitzpatrick. Estimating the number of species: a review. *Journal of the American Statistical Association*, 88(421):364–373, 1993.

[DKS2014] Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos. On estimating the average degree. In *Proceedings of the 23rd International Conference on World Wide Web*, pages 795–806. ACM, 2014.

[F1980] Ove Frank. Estimation of the number of vertices of different degrees in a graph. *Journal of Statistical Planning and Inference*, 4(1):45–50, 1980.

[GK2017] Apratim Ganguly and Eric D Kolaczyk. Estimation of vertex degrees in a sampled network. In 2017 51st Asilomar Conference on Signals, Systems, and Computers, pages 967–974. IEEE, 2017.

[GBB2016] Jianxi Gao, Baruch Barzel, and Albert-Laszlo Barabasi. Universal resilience patterns in complex networks. *Nature*, 530(7590):307, 2016.

[GR2008] Oded Goldreich and Dana Ron. Approximating average parameters of graphs. *Random Structures & Algorithms*, 32(4):473–493, 2008.

[JGM2020] Chunheng Jiang, Jianxi Gao, and Malik Magdon-Ismail. True nonlinear dynamics from incomplete networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 131–138, 2020.

References

[KLS2011] Liran Katzir, Edo Liberty, and Oren Somekh. Estimating sizes of social networks via biased sampling. In *Proceedings of the 20th International Conference on World Wide Web*, pages 597–606. ACM, 2011.

[KBM2012] Maciej Kurant, Carter T Butts, and Athina Markopoulou. Graph size estimation. arXiv preprint arXiv:1210.0460, 2012.

[RT2012] Bruno Ribeiro and Don Towsley. On the estimation accuracy of degree distributions from graph sampling. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages 5240–5247. IEEE, 2012.

[STS2008] Michael PH Stumpf, Thomas Thorne, Eric de Silva, Ronald Stewart, Hyeong Jun An, Michael Lappe, and Carsten Wiuf. Estimating the size of the human interactome. *Proceedings of the National Academy of Sciences*, 105(19):6959–6964, 2008.

[SW2005] Michael PH Stumpf and Carsten Wiuf. Sampling properties of random graphs: the degree distribution. *Physical Review E*, 72(3):036118, 2005.

[ZKS2015] Yaonan Zhang, Eric D Kolaczyk, Bruce D Spencer, et al. Estimating network degree distributions under sampling: An inverse problem, with applications to monitoring social media networks. *The Annals of Applied Statistics*, 9(1):166–199, 2015.