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Our ultimate goal is to design or employing existing machine learning methods to train

voting rules with certain axiomatic properties. The learnability for voting rules satisfying

some desirable fairness axioms is very useful. Once a new voting rule is proposed, it may

have some special fairness properties. It’s pretty hard to handcraft another voting rule

with the same axiom. However, we could learn a similar voting rule from instances, or

even a simpler rule with the exactly same property. It’s promising to learn all those exist-

ing voting rules efficiently and have their good genes to design a single meta-voting rule,

that satisfies more fairness criteria, or at least with a higher satisfiability to all fairness

criteria than any existing voting rule.

The very first step to learn a voting rule or mechanism from instances is to construct

a training set. The input profiles and the corresponding winner(s) are provided by an

expert or oracle voting rule, which we are attempting to learn. We query experts or

oracles with preference profiles, they reveal us their favorite candidate(s). We extract

important feature from these query-answer pairs and create the training set. Here we

make a brief note on the features we extracted from preference profile (a comprehensive

survey on existing voting rules again is required).

To make the training schema scalable for varied number of voters and candidates, we

extract the following signals from voting preference profiles: configuration parameters

(the size of the profile or the number of voters n and the number of candidates m), the

positional features of candidates (number of voters who have a candidate on the 1st,

2nd or 3rd place, all candidates’ positional features are includes), pairwise comparisons

features (winning or losing points in all head-to-head competitions, number of games

which a candidate beats others or be beaten), non-linear extreme features (whether a

Condorcet winner, whether a best candidates for beating (being beaten by) the largest

(smallest) number of candidates, whether a worst candidate for beating (being beaten by)

the smallest (largest) number of candidates) and so on. Xia and Conitzer 36 proposed the

concept of general scoring rule, we expect the training algorithm is valid for the broader

general scoring rule rather than the specific positional scoring rules or Condorcet rules.
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Besides training set on with voting predictions, we have to construct a training set reflect-

ing the fairness axioms that we are interested in. We adopted the idea proposed by Xia 35

to augment the voting rule training set with some specific fairness criteria. Take the Con-

dorcet consistency for instance. To select the Condorcet winner, firstly the learned voting

rule should be able to detect the sufficient condition for Condorcet winner’s existence.

Based on the conditions, the evidence could be very important feature for the learning

algorithm to collect. Besides, we could borrow the idea in learning to rank, try to learn a

meta-voting rule based on the existing voting rules. Most direct approach is to construct

the training set based on popular existing voting rules, especially those scoring rules.

Their scoring schema could be vital features for learning algorithm to learn. Actually, the

finer the features we extract, the better the prediction performance of the learned voting

rule.

Also, we will prove that whether a class of voting rules is learnability and show sound

reason to use as fewest instances to train in good performance as possible (VC-dimension

and out-of-sample error). To train the voting rule, we can incorporate the point-wise, the

pairwise and the triple-wise axiomatic constraints into the error function by borrowing

the idea from the famous RankNet in learning to rank.

To make the learned model easy to explain, we tend to learn based on linear functions

or decision trees, especially the decision tree with linear combinations of features as its

internal decision nodes. For example, Procaccia et al23,24 proposed a voting tree to learn

voting rules. There are some other works that relies on neural network and tries to learn

Condorcet and Borda rules3.
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1 Notation

• Set of alternatives, candidates, or agents A= {a1,a2, . . . ,am}

• Set of voters V = {v1,v2, . . . ,vn}

• Set of preference rankings Π(A) = {π1,π2, . . . ,πm!}

• Preference profile

Π(A,V ) =
{
K1 ∗ σ1+ . . .+Km! ∗ σn

∣∣∣∣ m!∑
i=1

Ki = n,Ki ≥ 0,σi ∈Π(A),1 ≤ i ≤m!
}

2 Learning Voting Rules

Learning voting rules with some axiomatic properties are formulated as the following

objective function

min
r∈H

er,train = er,oracle+
∑
k

λker,criteriak . (1)

with a regularization term
∑
k
λker,criteriak . Here, λk ≥ 0 is a penalty coefficient. The larger

the value, the higher the penalty the learned rule will receive for violating one axiomatic

constraint. Generally speaking, no voting rule could satisfy all fair criteria human ex-

pect. To create a voting rule satisfying as many axioms as possible, machine learning is

introduced. The algorithm learns from labelled examples and approximately fit to the

exact voting principle in the mind of some an expert, sometimes called oracle.

The training set have two parts: the query results. The results is collected according to a

series of queries which are submit to the expert in black-box. Another part presents in the

form of summing term. Each voting axiomatic criterion could be introduced to impose

the constraints over the structure of the learned voting rule. If the later part in the error

function is eliminated (λk = 0,∀k, then the learning algorithm just learns how exactly

the black-box works internally. Certainly, we also could use different values for different

criteria. The rule in the mind of the expert could be very simple. If it keeps in private,
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people are hard to guess. To learn the rule, we could just use all the collected data to ap-

proximate its mathematical structure. Certainly, we expert that the rule could be much

perfect, then it should satisfy many fairness properties which human value high. To im-

pose limitations over the learned model, the most straightforward approach is to design

an objective function, which takes the axiomatic properties into consideration based on

the assumption that these properties could be expressed in terms of mathematical ex-

pression. However, it’s extremely hard to make that happen. Since it’s relatively easy

to evaluate whether a voting mechanism satisfies certain axiom. We therefore refer to

discrete examples by introduce extra data to augment the data provided by the expert.

We expect that the learned mechanism could have minimum prediction error on the data

from different sources. Especially, it could keep balance between its approximation to the

ground-truth expert and have higher satisifiabilities over all axioms. For pointwise, such

as Condorcet winner criterion, it should have high probability to detect the Condorcet

winner and choose it as the winner if he/she is available. For the pointwise axioms, such

as neutrality. It should always tell consistent result even permutations take place on all

voters’ preferences. We notice that to evaluate the satisfiability of pairwise axioms. We

should evaluate the rule over all pairs’ of corresponding permutation profiles.

To make the mechanism learned from instances make correct predictions, it must be a

fitness to the selected voting rule to certain extend, at the same time, it should correctly

predict the selection of Condorcet winners from the Condorcet profiles. The second part

plays the same role in LASSO’s regularization term, imposed constraints on the voting

mechanism we are trying to recover. When the voting rule be able to make correct pre-

diction on all profiles, and could also correctly select the Condorcet winner. The more

accurate the voting rule could make predictions on the second subsets, the higher the

voting rule’s satisifiability to the CWC.

Suppose that the learned voting rule have a overall error on all preference profiles e, we

should also compute its error over the selected voting rules e1 and its prediction error

on those profiles e2. Ideally speaking, if we could perfectly train a voting rule, it should
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make highly consistent predictions of profiles with the selected voting rule, and the pre-

diction error over profiles which represent certain voting fairnesses should also be very

low. The lower the second error, the better the learned voting rule satisfies the corre-

sponding axiom. There may be a error bound, in mathematical analysis. To get a tight

error bound, we refer to the experimental analysis and voting rule-learning approach to

verify it.

To demonstrate the generalization ability of the learned voting rule, the most intuitive

way is make a scatter plot on the prediction errors (e, e1 and e2) and the numbers of

voters.

To learn a voting mechanism with the Condorcet consistency and the neutrality criterion,

we have to collect the right instances from the queries submitted to the expert and the

Condorcet profiles. Both are the basic requirements for a Condorcet consistent expert

rule to satisfy. Therefore, we sample the profiles from them and imposed permutations

on them to augment the training set.

Generating samples according to satisfaction of Condorcet criterion and neutrality, then

use multiple standard learning algorithms (e.g. random forest) to learn a voting rule.

Then, evaluate the learned rule by three criteria: error rate with Borda, satisfaction of

Condorcet, and satisfaction of neutrality. For each criterion, also include the train errors.

Learning a multivariate decision tree to approximate the positional scoring rules, then

general scoring rule and keeping trade-offs for its satisfiabilities of different axiomatic

properties.

All positional scoring rules do not satisfy Condorcet consistency and consistency at the

same time. Therefore, it’s very important to train a voting rule which seeks a balance

point between the satisfaction with the two axiomatic properties in dilemma. Besides, it’s

not easy to evaluate the satisfiability of consistency criterion, we have to refer to sampling

techniques, such as rejection-accept sampling approach. Keep the problem in mind, and

figure out ways to deal with it.
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2.1 Fairness Criteria

Fairness, also known as axiomatic property, sometimes axiom in brief, is used for evaluate

and compare voting rules. It’s nearly certain that no single voting rule could satisfies all

existing axiomatic properties. These desirable axioms represent people’s wishes. Wish

that the voting rule could satisfies many of them, and be a fair rule. To understand,

we make an incomplete summary of axiomatic properties. They are anonymity, neutral-

ity, consistency/separability, finite local consistency, Condorcet consistency, Condorcet

Loser, Pareto criterion (unanimity), non-dictatorship (stronger: anonymity), indepen-

dence of irrelevant alternatives (IIA), homogeneity, resolvability, monotonicity (see a per-

fect example), prudence, continuity, Smith criterion, reversal symmetry, public-enemy

criterion (If a candidate is ranked last by a majority of voters, then s/he should not win

the election.)

We note that a comprehensive survey on the relations of these voting criteria are required.

For example, the Condorcet consistency implies a majority criterion.

2.2 Fixed-majority Criterion

Fixed-majority criterion is a multi-winner analogue of the simple majority criterion in-

troduced by Debord. It requires that if there is a simple majority of the voters, each of

whom ranks the same k candidates in their top k positions (perhaps in a different order),

then these k candidates should form a unique winning committee.

Given k candidates Ak in A. If these k candidates as whole receives majority of top-k

votes, it’s guaranteed that the winner(s) must be in Ak. Suppose that we can efficiently

search the smallest Ak such that they are ranked by majority of the voters as their top-k

choices. It will help us the reduce the number of nodes to explore in STVDFS approaches,

and speed up the computation.

1. Multi-winner Analogues of Plurality Rule: Axiomatic and Algorithmic
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Table 1: Candidates 1,2 and 3 receive majority votes

1 1 1 1 1

1 2 3 4 4

2 3 1 1 3

3 1 2 2 1

2. Efficient Voting via The Top-k Elicitation Scheme

As shown in Table 1, candidates 1, 2 and 3 receive the majority votes because they are

ranked by majority voter as their top-3 choices. The winners must come from {1,2,3}.

2.3 Structure of Profiles with a Condorcet Winner

Suppose that we havem candidates and n voters in a voting, then there will be total num-

ber of (m!)n possible voting preferences presented by those voters, where m! is the total

number of all feasible strict linear ordering which could be imposed on the candidates.

Here we are trying to illustrate how to anatomy the voting preference profile space, which

as a result, could greatly help to compute the exact number of profiles with a Condorcet

winner. To be convenient, we denote the preference profile space as Π[m,n]. Each voter

has his or her own preferential ranking of these candidates, and has its counterpart in the

permutation space. Hereafter, we denote a voter’s preference ranking as π ∈Π[m,n].

A good representation approach could assist us to analysis many axiomatic properties

of voting rules. We represent each preference relation on the candidates as a directed

graph or its adjacent matrix. Then, the preference profile space is a spanned by all m!

permutations of those candidates, no matter how many voters there are. Each profile in

the space could be represented as a linear combination of those basis permutations.

For each permutation, we extract all possible head-to-head contests. If one alternative

win over the other one, he gain a point from the alternative; otherwise no point to gain.

For all candidates and a permutation, we could construct a matrix to record the result.
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For example, there are three candidates {A,B,C} and a preference ranking of them is

A ≻ B ≻ C. Its representation matrix could be written as

PA≻B≻C =


0 1 1

0 0 1

0 0 0


We have all pairwise comparison matrices of those permutations

{PA≻B≻C ,PA≻C≻B,PB≻A≻C ,PB≻C≻A,PC≻A≻B,PC≻B≻A}.

Also, we notice that all of them are singular matrix, and have a same rank m − 1. They

are used as the basis matrices to represent the preference profile space in terms of linear

combinations.

Given a (m,n) voting, for any preference ranking π ∈ Π[m,n], we have a non-negative

integer vector K ∈Nm! and the following representation form

Pπ =
m!∑
i=1

kiPi ,

with a constraint imposed on the coefficients, that is
∑
i ki = n, where ki means that the

number of voters who share a equivalent preference ranking P1 in the permutation space,

and their sum should be equal to the total number of voters or votes. Besides that, if the

preference rankings are sorted in order, the last one should be the transpose matrix of

the first one, i.e. Pm! = P T1 . Actually, there is a permutation matrix P12, such that P2 =

P T12P1P12. The relationship is straightforward, we can swap the position of two candidates

in P1 and transform to P2. Similarly, the principle can be applied to any two basis matrix

Pi and Pj . There must exist one permutation matrix Pij such that Pj = P Tij PiPij . According

to the relation shown by P1 and Pm!, we haveQ = P12P23 . . . Pm!−1,m! andQT P1Q = Pm! = P T1 .

What we are interested in is how to decompose the votes of those profiles who have a

Condorcet winner. Although many of them may do not have a Condorcet winner, but

the population of profiles with a Condorcet winner is also large. To compute the exact
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number of profiles with a Condorcet winner, and figure out their votes distribution, we

formulate a constraint integer program

P =
∑

1≤i≤m!

kiPi , (2)

s.t.
m!∑
i=1

ki = n, (3)

ki ∈N,1 ≤ i ≤m!. (4)

To guarantee a Condorcet winner, which must beat all opponents in head-to-head com-

petitions. It implies that all elements of one row of ∆ = P − P T should be positive except

the one at the diagonal position. There must exist the only 1 ≤ i ≤m!, such that

δi = eTi (P − P
T ) = eTi

∑
1≤i≤m!

ki(Pi − P Ti ), (5)

where δii = 0 and δij = 0,∀1 ≤ j , i ≤ m!, ei = (0, . . . ,0,1,0, . . . ,0)T . If a feasible ma-

trix P satisfies the above constraints, we could safely concluded that the i-th candidate

in the profile must be the Condorcet winner. The size of the feasible region is closely

related to the number of voters, the larger the number of voters, the harder to search all

feasible solutions. However, we could take advantage some symmetrical relationships of

parameters on the constraints to reduce the searching time.

If we could find all feasible solutions, we could construct all possible profiles with a

Condorcet winner. It will be extremely important for evaluate those profiles generated

from large-size voters.

2.3.1 Sufficient Conditions of the Existence of a Condorcet Winner

To learn a general voting rule that satisfies a specific point-wise axiomatic property (e.g.

Condorcet Winner Criterion, CWC) , the learning algorithm must be able to explore the

structure of the preference profiles with a Condorcet winner. Also, we research other

domain restrictions, like single-peaked preference, to better understand the sufficient

conditions for the existence of a Condorcet winner in a voting preference profile.
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2.3.2 Similarity of the Condorcet Winner Consistent Voting Rules

We learn voting rules from instances based on the ground truth voting rules, and cluster

them with the help of their fitness models or approximation agents. Based their the clus-

tering properties, we could figure out the important reasons which make them Condorcet

consistent.

2.4 Borda rule and monotonicity

Suppose c is a Borda winner of the preference profile P = {R1,R2, . . . ,Rn} over m candi-

dates C by n voters V , where Ri is the preference ranking over C by the voter vi ∈ V ,

i = {1,2, . . . ,n}. Therefore, c’s Borda score is not less than the Borda score each of other

candidates has received, namely

f (c,P ) =
m

max
k=1

f (ck,P ).

If one of the voter, w.l.o.g, saying v1, changes his/her mind, and raises candidate c’s rank-

ing in his/her preference ranking list from Ri to R′i and P
′ = {R′1,R2, . . . ,Rn}. The up-

ranking could increase c’s Borda score at least one point, while others’ do not increase at

all, even one candidate’s points decreases by one, f (c,P ′) > f (c,P ), which won’t harm c’s

place as a Borda winner. As a result, Borda rule satisfies the monotonicity criterion.

2.5 Neutralize learned rule

Suppose we have learned a voting rule f from instances, and the learned rule may fail

the neutrality criterion. To make it as neutral as possible, we would like to perform some

explicit permutations on the learned rule to create an ensemble r = {fM1
,fM2

, . . . ,fMm!
}

voting rule, based on all possible permutations over m candidates. Each member fMi
of

r is a permuted version of the learned rule f with the permutation Mi ∈ M, 1 ≤ i ≤ m!,

whereM= {M1,M2, . . . ,Mm!} is the permutation set over m candidates.
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How to construct the rule member fMi
is the core of this section. Now, we define a general

form of ensemble rule r from f with the help of the permutationsM as following

r = {fM1
,fM2

, . . . ,fMm!
}, fMi

(P ) = gi(M)f (hi(M)(P )), 1 ≤ i ≤m!, ∀P ∈Π[m,n]. (6)

The general voting rule r makes predictions based on the majority rule

r(P ) = argmax
1≤k≤m

∑
1≤i≤m!

I(fMi
(P ) = k). (7)

If the general voting rule satisfies the neutrality criterion, we have the following result

r(M(P )) =M(r(P )), ∀P ∈Π[m,n],M ∈M. (8)

Suppose we perform permutations on the learned voting rule f and the corresponding

predictions, therefore gi(M) = Mi , hi(M) = M−1i , and fMi
(P ) = Mif (M

−1
i (P )), where

1 ≤ i ≤m!. It’s guaranteed that the formulation makes a neutral voting rule.

Proof. Without loss of generality, we denoteM1 = I the identity permutation, and fM1
=

f . Suppose that fMi
(P ) = Mif (M

−1
i (P )), then we have r(P ) =

∪
1≤i≤m!

Mif (M
−1
i (P )). Ac-

cording to the definition of neutrality, we feed the general voting rule a permuted profile

M(P ), ∀M ∈M. The prediction of the permuted profile is

r(Mk(P )) =
∪

1≤i≤m!

Mif (M
−1
i (Mk(P ))).

We know that when i = k,Mif (M
−1
i (Mk(P ))) = Mkf (P ) = MkfM1

(P ), and therefore

MkfM1
(P ) ∈ Mkr(P ). Since MkfM1

(P ) ∈ Mkr(P ), it implies that Mkr(P )
∩
r(Mk(P )) , ∅

for each k ∈ [1,m!], and r created with the first structure satisfies the neutrality crite-

rion.

Learn a general scoring rule that integrates both positional scoring rules (plurality and

Borda count), and Condorcet methods (e.g. Copeland, RankedPairs). We will connect

learning to rank with social choice rules, and propose some new idea to learn a general
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rule consistent with as many voting rules as possible, and to make it fair satisfying as

many axioms as possible.

To learn the social choice mechanism, we can transform it to a classification problem.

Each candidates (alternative or agent) is a class, and each profile is an input example.

The winner of the profile based on certain voting rule is the target. There are untold

number of classification algorithms could be directly applied to solve the problem.

We would like to investigate decision tree and neural network. The decision tree has a big

advantage for its ease of explanation, and could be able to learn the Condorcet method,

which includes many pairwise comparisons. The neural network, although hard to in-

terpret the complex structure of model, has better performance in learning a positional

voting rule. There are many ways to integrate these two characteristics of neural network

and decision tree.

We have explored the newly developed deep neural forests, however the experiments on

data do not very promising. The current implement focuses on the decision tree side. A

further development could be extended to the neural network learning.

Besides, we should also reuse the existing decision tree algorithms, especially those hav-

ing linear combination of input features in node splitting.

3 Preference Profile Sampling Model

To generate random preference profile, researchers proposed several probability models

on voting7, among which the most widely known ones are the Impartial Culture (IC),

Anonymous Impartial Culture (AIC), and the Real Society (RS) assumptions.

• IC: Voters are completely independent, every profile from Π(A)n is equiprobable,

each voter selects her preferences according to an uniform probability distribution

on the set of linear orderings. Their decisions are completely random and indepen-
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dent. The assumption of IC is a worse case analysis, and produce cyclic preference

profiles with a high probability.

• AIC: Voters are slightly independent22.

• RS: Voters are highly dependent, all of them are belonging to certain parties –

Metropolis Algorithm.

Based on the anonymous impartial culture assumption, EĞECIOĞLU and Giritligil 7 pro-

posed to generate the anonymous equivalent classes that the voters are anonymous. Let’s

see an example with m = 2 and n = 3. There are (m!)n = 8 possible preference profiles,

as indicated in Table 2.

Table 1: Preference Profiles of n= 3 Voters over m= 2 Candidates {a,b} and the AECs

a a a

b b b

b a a

a b b

a b a

b a b

a a b

b b a

b b a

a a b

a b b

b a a

b a b

a b a

b b b

a a a

According to Table 2, there are four rows and each of them represents one anonymous

equivalent class. For example, the first AEC includes all preference profiles that all voters

sharing the same preference of a ≻ b, i.e. 3 ∗ a ≻ b. The last AEC represents all voters

sharing the same preference that b ≻ a, i.e. 3 ∗ b ≻ a. The second and third one is 2 ∗ a ≻

b+ b ≻ a and a ≻ b+ 2 ∗ b ≻ a, respectively. Given m candidates and n voters, there are

(n+m!−1
m!−1 ) AECs in total and (3+2!−1

2!−1 ) = 4.
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3.1 Voting Features

Considering each profile as a query, and for each alternative we extract the individual

ranking information, including the number of voters who cast it as first choice, second

choice, and so on. Another vital component could be explore is the pairwise competition

profile. Given the relative place in a ballot, we could cumulate relevant data of each pair

of alternatives, especially the pair made from a winner and its opponents.

We create an integrated (pointwise and pairwise) LETOR method with the pointwise vot-

ing features of each individual alteranative and the head-to-head comparisons. From the

pointwise features, we learn a linear function to produce pointwise scores. From the pair-

wise features, we learn another linear model. Therefore, both kinds of features combined

to model the preference relations among alternatives.

GivenA= {a1,a2, . . . ,am} and a profile P ∈Π(A)n. We extract from P the following point-

wise features:
a1→ x11 x12 · · · x1m ← x1,

a2→ x21 x22 · · · x2m ← x2,
...

...
... . . . ...

...

am→ xm1 xm2 · · · xmm ← xm,

where xij is the number of voters ranking ai as his or her jth choice, i, j = 1,2, . . . ,m.

Based on the relative places in a preference ranking, we have the vote distribution over

the positional differences between ai ,aj ∈ A. Let zij(k;π) be the number of voters who

place ai and aj on his or her preference ranking with a positional difference k, which has

2(m − 1) possible values k ∈ {±1,±2, . . . ,±(m − 1)}. Accumulating these features over all

possible rankings in P , we have the pairwise positional features Z = (zij)m×m×2(m−1)

zij =
[
zij(1−m), . . . ,zij(−2),zij(−1),zij(1),zij(2), . . . ,zij(m− 1)

]T
∈R2(m−1),

and

zij(k) =
∑
π∈P

zij(k;π) =
∑
π∈P

[[π(ai)−π(aj) = k]], i, j = 1,2, . . . ,m.
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Suppose an oracle voting rule r chooses ai ∈ A as the winner, i.e. r(P ) = ai . The pairwise

features between ai and aj ∈ A can be utilized to construct the preference model

(ai ,a1)→ zi1(1−m) · · · zi1(−1) zi1(1) · · · zi1(m− 1) ← zi1,

(ai ,a2)→ zi2(1−m) · · · zi2(−1) zi2(1) · · · zi2(m− 1) ← zi2,
...

... . . . ...
... . . . ...

...

(ai ,am)→ zim(1−m) · · · zim(−1) zi1(1) · · · zim(m− 1) ← zim.

According to the above definitions of the two kinds of features, they present some obvious

inter-dependent relations
m∑
j=1

xij =
m∑
j=1

xji =
∑

k∈{±1,...,±(m−1)}

zij(k) = n,∀i, j = 1, . . . ,m.

Given profile P and a true voting rule r, with all pairs of alternatives r(P ) and aj ∈ P , we

propose the following integrated LETOR model

min
w,θ

L
[
f (A×A;w,θ),r

]
s.t. P r

(
r(P ) ≻f aj

)
=

[
1+ e−sj (P )

]−1
sj(P ) = f (r(P ),aj ;w,θ),∀1 ≤ j ≤m

to learn r the true voting rule with all the pointwise positional features of the individual

alternatives and all associated pairwise features. Here L(f , r) is an in-sample loss function

of the learned pairwise voting rule

f (ai = r(P ),aj ;w,θ) = g(xi ;w)− g(xj ;w) + h(zij ;θ),w ∈Rm,θ ∈R2(m−1)

to the true voting rule r. It could be defined as a cross entropy loss function over all input

profiles P ∈P, i.e.

L
[
f (A×A;w,θ),r

]
= − 1
|P|

∑
P ∈P

m∑
j=1

P r
(
r(P ) ≻r aj

)
logP r

(
r(P ) ≻f aj

)
.

Therefore, we have the final voting learning method formulated as following

min
w,θ

− 1
|P|

∑
P ∈P

m∑
j=1

P r
(
r(P ) ≻r aj

)
logP r

(
r(P ) ≻f aj

)
s.t. P r

(
r(P ) ≻f aj

)
=

[
1+ e−sj (P )

]−1
sj(P ) = f (r(P ),aj ;w,θ),∀1 ≤ j ≤m.
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There are many methods to formulate the pairwise preference probability P r
(
ai ≻ aj

)
from individual scores or pairwise scores, e.g. Mallows’ model, Plackett-Luce model,

Bradley-Terry model and logistic transformation used in RankNet2.
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3.2 General Scoring Rule

Xia and Conitzer 36 proposed the generalized scoring rules, which united Condorcetmethod

and other positional scoring rules. We extract from each profile all the absolute and the

relative positional information, and from which the source preference profile can be im-

mediately reconstructed.

Let xija,b be the number of voters who place a ∈ A in position i and b ∈ A in position j.

When tie is not allowed, xija,b = 0 for i = j or a= b. The features are called generic features,

from which all the related positional features and pairwise features could be constructed.

• Positional Features: the number of voters who rank a as his or her i-th choice

xia =
∑
b∈A

m∑
j=1

x
ij
a,b,∀1 ≤ i ≤m.

• Pairwise Features: the number of voters who prefer a to b

xa≻b =
m−1∑
i=1

m∑
j=i+1

x
ij
a,b,∀a,b ∈ A.

We aim to learning a general scoring rule f (x;w) from the extracted profile preference

features, where w is the parameter vector of the scoring function. There are many meth-

ods to learn a linear model. For example, neural network, SVM, decision tree et al. The

weight is the atomic components. However, these extracted features require further re-

finement, because it may not be able to reveal some crucial information, e.g. the strength

of the relative preference. A vote a ≻ c ≻ d ≻ b presents a stronger relative preference of

a ≻ b than a ≻ b ≻ c ≻ d, and the later conveys much stronger preference of a ≻ b than

that of c ≻ d ≻ a ≻ b. Both positions of a and b in comparison are important features that

deserve additional attention.
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3.2.1 Decision Tree Voting

Considering A= {a,b,c} and its 3! = 6 possible linear orderings

Π(A) = {a ≻ b ≻ c,a ≻ c ≻ b,b ≻ a ≻ c,b ≻ c ≻ a,c ≻ a ≻ b,c ≻ b ≻ a}.

Given a preference profile P ∈ Π(A)n, we can have the following features: the number

(or percentage) of each possible linear ordering; the number (or percentage) of pairwise

comparisons, including {a ≻ b,b ≻ a,a ≻ c,c ≻ a,b ≻ c,c ≻ b}. We notice the following

relations for the linear ordering and the pairwise comparisons

#(a ≻ b) = #(a ≻ b ≻ c) + #(a ≻ c ≻ b) + #(c ≻ a ≻ b),

#(a ≻ c) = #(a ≻ b ≻ c) + #(a ≻ c ≻ b) + #(b ≻ a ≻ c),

#(b ≻ a) = #(b ≻ a ≻ c) + #(b ≻ c ≻ a) + #(c ≻ b ≻ a),

#(b ≻ c) = #(a ≻ b ≻ c) + #(b ≻ a ≻ c) + #(b ≻ c ≻ a),

#(c ≻ a) = #(b ≻ c ≻ a) + #(c ≻ a ≻ b) + #(c ≻ b ≻ a),

#(c ≻ b) = #(a ≻ c ≻ b) + #(c ≻ a ≻ b) + #(c ≻ b ≻ a).

sa > sb

sa > sc

a

Y

sc > sb

c

Y

?

N

N

Y

sb > sc

b

Y

sc > sa

c

Y

?

N

N

N

#(a � b) > #(b � a)

#(a � c) > #(c � a)

a

Y

#(c � b) > #(b � c)

c

Y

?

N

N

Y

#(b � c) > #(c � b)

b

Y

#(c � a) > #(a � c)

c

Y

?

N

N

N

Fig. 1: Decision Tree Voting Procedure of Borda (Left) and Condorcet (Right) Method
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The Borda rule is to compute each candidate’s Borda scoring with a positional weight

vector w = (w1,w2,w3)
T . Therefore, we have the Borda scores

sa = w1 ∗
[
#(a ≻ b ≻ c) + #(a ≻ c ≻ b)

]
+w2 ∗

[
#(b ≻ a ≻ c) + #(c ≻ a ≻ b)

]
+w3 ∗

[
#(b ≻ c ≻ a) + #(c ≻ b ≻ a)

]
,

sb = w1 ∗
[
#(b ≻ a ≻ c) + #(b ≻ c ≻ a)

]
+w2 ∗

[
#(a ≻ b ≻ c) + #(c ≻ b ≻ a)

]
+w3 ∗

[
#(a ≻ c ≻ b) + #(c ≻ a ≻ b)

]
,

sc = w1 ∗
[
#(c ≻ a ≻ b) + #(c ≻ b ≻ a)

]
+w2 ∗

[
#(a ≻ c ≻ b) + #(b ≻ c ≻ a)

]
+w3 ∗

[
#(a ≻ b ≻ c) + #(b ≻ a ≻ c)

]
,

and rank candidates based on their Borda scores. The one with largest Borda score wins.

As indicated in Fig. 1, Borda rule and Condorcet method for 3 candidates can be formu-

lated with a decision tree of at least depth 3.

3.2.2 Weight Refinement

To make the explanation for model explicit, we decompose the original weight w to two

components: the weight α of preferred position, and the weight β of relative position

margin, i.e. w = α ∗ β. Moreover, the symmetry property should also be brought into

consideration. With the decomposition, the total number of parameters is reduced. There

are m possible positions for m= |A|, so

α = (α1,α2, . . . ,αm)
T ∈Rm,

where αi indicates the weight of a preferred candidates locating at position i. Even the

last element αm can be eliminated or directly assigned a zero weight αm = 0 because the

last place is unfavorable. The relative position margin can be fixed, the possible values

are {±1,±2, . . . ,±(m− 1)}, corresponding to a relative positional weights

β = (β1−m, . . . ,β−2,β−1,β1,β2, . . . ,βm−1)
T ∈R2(m−1).

The relative importance of each element in α and β should be different, but there exists

some well-defined constraints on them. In general, we expect that

α1 ≥ α2 ≥ . . . ≥ αm, β1−m ≤ β−2 ≤ β−1 ≤ β1 ≤ β2 . . . ≤ βm−1.
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4 Voting and Preference Data Set

• PrefLib.org house over 3,000 preference datasets used by the community.

• Olympic Election of Hosting Places: Mathematics in Sport

• Ariel Procaccia introduced an awesome example of election with four candidates.

Given a fixed preference profile, different voting rules however produces distinc-

tively different outcomes.

5 Data Set

We generate three profile data sets:

• SOC-1: All possible permutation rankings over m candidates, each permutation

receives one vote, therefore each profile has m! votes. Here, 3 ≤m ≤ 10.

• SOC-2: All possible combinations of permutation rankings over m candidates for

given number of votes n. Besides, voters’ names are not considered. Here, m =

{3,4,5} and 2 ≤ n ≤ 5. There are more than 9 million distinct profiles for m= 5,n=

4, it’s extremely large. To limit the size of our data set, we just generate the profiles

of n= {2,3} for m= 5.

• SOC-3: Randomly generated profiles with specificm and n. Herem= {10,20, . . . ,100}

and n= {10,20, . . . ,100}. For each (m,n), we sample s = 1,000 profiles.

• SOC-4: Randomly generated single-peaked preference profiles34 with specific m

and n, where m = {10,20, . . . ,100} and n = {10,20, . . . ,100}, we sample s = 1,000

profiles for each pair (m,n). To generate the single-peaked votes, we are required to

provide the x-axis. In our implementation, the x-axis preference ranking is 0 < 1 <

. . . < m− 1.
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There are 8 profiles (each file contains a profile) in SOC-1, 421,685 profiles in SOC-2 (see

Table 5) and 10× 10× 1,000= 105 in SOC-3.

n m= 3 m= 4 m= 5

2 21 300 7,260

3 56 2,600 295,240

4 126 17,550 9,078,630

5 252 98,280 225,150,024

Table 1: Anonymous Equivalent Classes

To make our heuristic method convincing, we concentrate on a subset of these profiles.

These profiles are called hardcases. Here, we give the definition of the hardness of a

profile when searching the winner using a voting rule (it is specific for STV, similarly we

can define the hardness for Baldwin, Coombs, Nanson and RankPairs).

1. Extremely Easy Cases are profiles which do not contain any tie in terms of plurality

score from the very beginning.

2. Easy Cases are profiles with a single winner, who can be selected by ONLY repeat-

edly applying the Heuristic algorithm (directly eliminate one ormultiple candidates

at one time without considering the ordering to eliminate them).

3. Hard Cases are profiles that can not be processed by the Heuristic at some point.

When m > n, some alternatives must have zero plurality score and must be eliminated

through the heuristic.
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6 Experimental Settings

There are setting that can be easily turn on/off in our experiments include Caching,

Pruning, Heuristic, Sampling and Priority Function in Priority Queue. Except for Q

which indicates the priority function used, all other parameters are now boolean or equiv-

alent {0,1}.

The Caching is used in checking whether a state has been visited. There are various

implementations for this goal. For example, keeping a list of each states, keeping a hash

table for all visited states. Experimental results indicated that the later approach is more

efficient.

The Pruning is a step to check the state if all remaining alternatives have been selected

in previous steps. If it’s true, the program absolutely does not need to continue exploring

the current branches (prematurely pruning a branch will certainly affect the number of times

of an alternative being elected as a winner).

The Sampling step is applied before the actual election begins. It comes from the brute

force method with a specific priority ranking in eliminating alternatives when there are

ties. The priority ranking (aka permutation over alternatives) are randomly generated.

The number of priority ranking (or size of sampling) we generated can affect the number

of winners produced from this procedure. It plays as a rough estimation even it can find

all the winners sometimes. Sampling causes randomness for the later procedures, there-

fore it’s turn off when we concern more about the number of nodes to extend. Therefore,

we have another important indicator, the effective number of alternatives in the pruned

profile. What really matters are these left.

Different from the standard DFS method to search winners, the priority function is used

for Best First Search. How to define the priority of each state (the set of candidates remain

at the current node) is the crucial factor affecting the search efficiency.

We expect the heuristic and the priority function are helpful in reducing the running
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time, reducing the number of nodes to extend. It’s obvious, the beneficial in running

time saving for running the heuristic and updating the priorities is counteracted. To

make the comparison fair, we also count out the times of computing the plurality scores

(scoring time) and expect that both strategies can reduce the total number of times in

scoring compared with the standard DFS method.

Another aspect is the preprocessing. It’s trivial, but very important for fair comparison.

It’s used before the actual election happens, and eliminates those alternatives who have

never appeared as any voter’s top choice. Their plurality scores are zero and have no

chance to be elected at all even based on standard DFS method.
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7 Searching Efficiency

Based on the above description of our experimental settings, here we would like to intro-

duce an important indicator to measure the performance of the voting rule with various

strategies.

The proposed heuristic searching algorithm (detailed information could be found in next

subsection) and the priority function are expected to reduce the number of times to scor-

ing and the number of nodes produced. The current outcomes in our experiments are

not promising. It’s pretty hard to dramatically reduce both values. We introduce another

metric the Searching Efficiency. It’s a curve with the percentage of number of nodes

produced as the x-axis and the percentage of number of winners found as the y-axis. The

domain is a 1 × 1 box, i.e. [0,1] × [0,1]. Without Sampling, at the very beginning stage

of the election, no node and no winner corresponding (0,0), and when finished, it corre-

sponds (1,1). It’s obvious, the Sampling will change what it looks like. Extreme cases can

be a flat line, or a curve with large y-intercept which is above the curve produced from

standard DFS method.

We expect the proposed heuristic or priority function helps to lift the curve as much as

possible, which can demonstrate that the proposed method can find all the winners much

soon than other approaches. That’s what we called searching efficiency.
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8 Heuristic Search Algorithm

The DFS approach is utilized to search all possible STV winners based on various tie-

breaking rule, and each search path from top-to-bottom of the tree corresponds to a dif-

ferent tie-breaking rule.

The heuristic search algorithm (HSA) provides two strategies (a) eliminate a set of can-

didates directly without considering the tie-breaking rule in use, and (b) early terminate

search procedure with some heuristic conditions to speed up DFS.

A direct elimination of weak candidates from profile requires the following steps:

• sort candidates based on their plurality scores

• place candidates to different hierarchical tiers and with candidates more favored at

a higher tier

• search from top to low tier and eliminate all those lower tiers if their total plurality

score is strictly smaller than the one they immediately followed.

The early stop strategy includes considering whether the remaining candidates has been

evaluated at a visited node and whether all of them have been elected as the winners. The

later condition may be rare, once happens, any attempt to extend the tree must be a waste

and an early stop can prevent it.

The effect of this heuristic is in doubt. The situation that the heuristic can eliminate

multiple alternatives one time is really rare. Then, it actually does nearly the same work

as the standard DFS method. Each time, at most one alternative can be eliminated from

the profile.
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8.1 Priority Functions

To make as few as possible exploration, the next state we expect to visit the one which has

the highest chance to produce a winner who has never been chose before. Let’s imagine

some special cases:

1. All alternatives in the state are known winners. It’s useless and the Pruning cuts it

off.

2. The size of state is small, and none of them are known winners. It’s absolutely the

top priority to visit these states.

3. The plurality scores for one alternative who has never been chose before is largest.

It certainly deserves our attention.

Even three special cases reveals many important features that we can investigate to find a

better priority function. These features can be depth, size of the state, number of alternatives

who never win before, the plurality score of the alternative who never wins before. Based on

our observation, we can design some priority functions leading us to extend a better state.

Looking back on our recursion DFS, the alternative with highest chance of being elected

before will be eliminated at top priority. It reduces the chance as much as possible, even

prevents that known winner being reelected again. The recursion DFS places higher a

weight on depth, and then refers to additional feature (e.g. whether an alternative is a

known winner, could (s)he win with a higher probability in the next round) to break

ties, i.e. selecting from those who stays at the same depth the next to eliminate. The

additional features should increase the chance of producing a new winner who has

never been seen before.

Let P be the profile, S be the current state, andW be the set of known winners. Further-

more, we denote U be the set of the remaining alternatives in S but donot present in W .

Therefore, U = S \W or U = S−W . All alternatives in U are those who never win before.

Thus, we have U ∩W = ∅. The priority function is written as F.
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• F(S,P ) =m ∗
[
m− ∥S∥

]
+ ∥U∥, where m− ∥S∥ shows the depth of the current state in

the tree. It prefers to extend the nodes at deeper layers, and detect the states with

more alternatives in U .

• F(S,P ) =
(
∥U∥ ∗ ∥max

u∈U
P (u)

)
/
(
∥W ∥ ∗max

w∈W
P (w)

)
• F(S,P ) =

(
∥U∥ ∗ ∥max

u∈U
B(u)

)
/
(
∥W ∥ ∗max

w∈W
B(w)

)
• F(S,P ) =

∑
u∈U

P (u)/n

• F(S,P ) = 2
∑
u∈U

B(u)/m(m− 1)n

We realize that if the state’s priority changes frequently, sometimes may deteriorate the

overall performance. Even worse, it may lead to a Breadth First Search, a very terrible

way to extend the voting tree. How to avoid such kind of unstable updating? The pre-

vious estimate should not been completely discard. Then, we propose a weight decay

approach to reuse the previous estimation of a state. It will be much stable than calcu-

lating the weight from scratch. We call the latest data shows us a local estimate and the

previous computing can be broad and even global evaluation. The core idea is that the

recent feedback from the election contains more important and accurate information of

the overall situation. Therefore, at the same time, we should boost the estimation based

upon the statistics (e.g. winning frequency) of the alternatives in the current state and

the election outcomes (who is the new winner).

The ordering of nodes in fringe should be considered as an important signal and tuning

it based on the added data. Let T be the fringe, and T (S) be age of state S kept in T . The

recently added state has its age T (S) = 0. DFS gives young state higher weights than old

ones to make sure it is a LIFO (Last-In-First-Out) stack, and its implicit priority function

is F(S,P ) = ∥T ∥ − T (S). Age is an important feature, the frequency of one alternatives

being elected in previous rounds can also provide some insights for us. Those states

contain many alternatives with higher frequencies are given a low priority.
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• F(S,P ) = (∥T ∥−T (S))/[1+
∑
a∈S

f (a)], where f (a) is the frequency of a being elected.

• F(S,P ) = (∥T ∥ − T (S))/[1 +
∑
a∈S

(f (a) ∗ B(a)/MaxB(m))], where B(a) is a’s Borda

score, MaxB(m) = m(m − 1)n is the maximum Borda score that an alternative can

get from n voters over m alternatives.

• F(S,P ) = (∥T ∥−T (S))/[1+
∑
a∈S

(1+ f (a) ∗P (a)/n)] where P (a) is the Plurality score

of a.

• F(S,P ) = αF(S,P , t−1)+F(S,P , t), where α ∈ [0,1] is the damping factor. F(S,P , t)

is the same as we did in previous versions which discard their previous estimation.

Another direction valuable to explore is machine learning, specifically the reinforcement

learning (e.g. AlphaGo). Suppose we have learned a election function which can scoring

each alternative in a state to show its probability of being elected. We can take advan-

tage the probability prediction to choose a better next state. Here, we have to solve an

important searching problem: you have a perfect prediction model, from which you

knowwho are the winners, howwould you walk from the top-to-bottom of an implicit

voting tree with a minimum path, and find all the winners. All the possible paths are

ruled by the specific voting rule. If the tree is fully extended, it will be a trivial question.

Let us denote g the learned model and define several priority function F based on g:

• F(S,P ) =
∑
u∈U

g(u,P )/∥S∥

• F(S,P ) =max
u∈U

g(u,P )/max
a∈S

g(a,P ) ∈ (0,1]

• F(S,P ) =
∑
u∈U

g(u,P )/
∑
a∈S

g(a,P ) ∈ [0,1]

According to our observation on the learned model, it fails to search the winner effec-

tively. However, there is an interesting pattern in the number of nodes to visit for each

new winner – winners are found at the end stage and the number of nodes to extend is

very close. One possible reason is the model makes it a BFS-based voting approach. We
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would like to explore those states with more tied-alternatives, and try our best to prevent

BFS from happening.

8.2 Approximation

We can also design some approximation method to solve the problem. Sampling could be

the easiest one approach to get close to the exact solution. We proposed another method

with machine learning, and made predictions from states, therefore we built a rough

image of the big picture. All predicted winners will be assigned the same weights for

being predicted one time. The cumulated weights will be used to guide our heuristic

search. More specifically, we first extend the tree based on BFS, with all tied states, we

make prediction and compute the weights of all predicted winners. The predicted winner

who gets the smallest weight will have top priority to be reevaluated and extended. To

make the number of nodes extended as small as possible, we may set a predefined depth

to explore.

Given a prediction model f with prediction accuracy (recall, precision) e. Let’s use it to

predict the winners in multi-round STV election method, what’s the probability of mak-

ing error based on the aggregated results of top k layers of the tree. The least number of

layers we have to extend to make prediction with 100% accuracy. Assume the children

can produce a higher accurate prediction, could we overthrow the inconsistent predic-

tions that the parent node makes with all that of its children nodes. Take care of those

unable to detected, they must have some special characteristics that prevent us to identify

them. These special characteristics maybe helpful to design a good heuristic.

8.3 Bound the Number of Nodes

Given a perfectly symmetric profile of m alternatives, the number of voters is n=m!, we

would like to derive theminimum number of nodes such that we can compute all possible
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winners from the profile. We notice that, in m! preference rankings of alternatives A =

{1,2, . . . ,m}, there arem preference rankings contains each of (m−1)! preference rankings

ofA−{i}, i = 1,2, . . . ,m. It indicates that each sub-preference-rankings ofA−{i} are equally

distributed over m! preference rankings of A. Let N (m) denote the minimum number of

nodes, the following equation must hold

N (m) = 1+N (m− 1) + (m− 1),

where the first term is the root node that contains all alternatives, the second term is

the minimum number of nodes we have to extend for the branch without i ∈ A. From

one branch, we can have all alternatives except one alternative get one change of being

elected. Then, we need at most extend m−1 nodes from top-to-bottom along one path to

find the remaining alternative and select it as the winner. The number is represented by

the third term in above equation.

Based on the equation, we can get N (m) = N (m − 1) +m = N (m − 2) + (m − 1) +m =

N (2)+3+4+. . .+m, whereN (2) is the minimum number of nodes to extend, it’s obvious

N (2) = 3, therefore N (m) = m(m+ 1)/2. For a perfectly symmetric profile of m = 10

alternatives, we have to extend at least N (10) = 10 ∗ 11/2= 55 nodes.

For other kinds of profiles, is it possible to compute the optimal number of nodes to

extend? If not, could we get a bound for the number? Suppose we have an sub-optimal

search rule, and given a specific profile, how can be get the optimal path from the sub-

optimal search paths. If we can answer at least one of the above questions, we will be

able to compute the maximum number to reduce. Suppose a branch contains only one

single winner, however it may contains some ties. If we can prune this kind of branch

after we have found a winner and we are quite sure that it won’t produce more than one

winner, the number of nodes reducedmust be very large. In order to discover the winners

as soon as possible (early discovery), we expect that the number of nodes to extend for a

new winner should be optimal. For example, the optimal number of nodes to get the first

winner should be the size of the start state. Suppose a profile has a unique winner, the
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early discover will has only one result, and will be always the optimal one for a rule that

walks from top-to-bottom without disruption. How about the remaining winners? Could

we find a way to compute the optimal values if there are multi-winners?

Based upon the idea, we can make improvement over the multi-round STV. The approach

is to train a model that could detect a profile with single winner with (or close to) 100%.

Then, we could use the model to avoid many unnecessary explorations.

8.4 Select the Best or Avoid the Worst

Most researchers are designing a fair voting rule or mechanism to choose a candidates.

However, avoiding mistakes in decision making on the other side has not received an

equivalent amount of attention. Electing a warmonger presidential candidate into office

is generally worse than having a mediocre but harmless president. Sometimes, a mistake

could lead to even a disaster for the whole society.

8.5 Randomization Analysis

Expected depth of any internal node in the voting tree, or the expected depth of a leaf

node. To the multi-round winner determination procedure, it can be divided into two

steps:

1. Estimate the probability of a candidate being a winner

2. Estimate the expected depth to place the candidate at a leaf node
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9 Multivariate Decision Tree

Most decision trees are univariate, in which each decision node splits training exam-

ples based on one single input feature or variable. The multivariate decision trees (a.k.a

oblique tree) is different, it splits data points based on a subset of the entire feature space

at decision nodes. It’s able to formulate a more complex structure presented in the input

data set than the univariate decision tree.

An intuitive approach is to learn an (local or global) optimal hyperplane and separate

data points to two half-spaces. Various methods have been proposed to search the hy-

perplanes. For example, the Classification and Regression Tree, a.k.a CART1 is one of

the first algorithms that allowed multivariate split. Based on a heuristic hill climbing

method with backward feature elimination, CART searches an optimal linear separator

in each internal decision nodes. Murthy et al. 20 made a thorough extension of CART’s

strategy and proposed the efficient Oblique Classifier 1 (OC1). It searches for the best

univariate split as well as the best oblique split, and it only employs the oblique split

when there is an improvement over the univariate split. OC1 uses both a deterministic

heuristic search (as in CART) for finding local-optima and a non-deterministic search

for escaping local-optima. Ittner and Schlosser 9 proposes using OC1 over an augmented

feature space, generating non-linear decision trees. The key idea is to create new features

by considering all possible pairwise products and squares of the original features.

You and Fu 37 learned a linear combination of features at each decision node based on

the Fletcher-Powell descent method. Park and Sklansky 21 induced a piece-wise linear

discriminant that cut a maximal number of Tomek links based on the principle of locally

opposed clusters of objects. A Tomek link connects an opposed pair of data points for

which the circle of influence between the pair doesn’t contain any other points, as shown

in Fig.2. Tenmoto et al. 32 proposed to construct a piecewise linear classifier which cuts

multiple Tomek links based on21. We could implement the clustering procedure based

on the density peak method26.27 proposed to combine neural network and decision tree
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- neural tree network.

Fig. 2: Tomek Link, Maximum Cut Hyperplane and Density Peaks

9.1 Tomek Links and Condensed Nearest Neighborhood

Gabriel Graph, piecewise linear classification.

9.2 Maximum Cut Planes

To simulate the procedure of using a linear combination of input features to split the

input space, and construct a decision tree-like model with multiple hyperplanes. The

basic idea is to recursively search an optimal linear hyperplane to split the current input

space into two regions. Then, in similar pattern split the half regions until the split

regions satisfying certain criterions.

There are numerous ways to search those optimal linear functions. Each method relies on

a specific loss function to iteratively approximate the voting procedure. In this section,

we talk about one special process – maximum cut planes. Each hyperplane is a linear

function that cut through majority of the neighbor-pairs.

Let X be the input space, and xi ,xj ∈ X are two input examples with different labels, i.e.

yi , yj . In our case, each input example represents a preference profile. We have a well-

defined distance measure d : X ×X 7→R, and a predefined threshold ϵ > 0. Those pairs of
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input examples with distance less than ϵ form the ϵ - neighborhood N (X;ϵ), i.e.

N (X;ϵ) =
{
(xi ,xj)|d(xi ,xj) ≤ ϵ;yi , yj ;xi ,xj ∈ X

}
.

Each element in N (X;ϵ) is called an ϵ - neighbor pair.

Suppose there is a linear function f : X 7→ R. The linear function could split the whole

input space to two sub-regions: positive one X+ and negative one X−, it’s certain that

X = X+ ∪ X−. Examples in the positive and negative regions respectively satisfy the

following relations  f (x;w) ≥ 0, x ∈ X+,

f (x;w) ≤ 0, x ∈ X−.

We say the linear function f cuts an ϵ - neighbor pair (xi ,xj) ∈N (X;ϵ) if f (xi ;w)f (xj ;w) ≤

0. The linear model is a cut plane separating xi and xj to different sides. To search an

optimal linear function f that cuts through most number of ϵ - neighbor pairs, we have

w∗ = argmax
w

∑
(xi ,xj )∈N (X;ϵ)

[[f (xi ;w)f (xj ;w) < 0]]

Fig. 3: Sigmoid Functions

35



It’s very hard to optimize a non-smooth function, we choose to maximize one of its upper

bounds. With the fact that [[x < 0]] ≤ log(1+ e−x), then we choose to maximize a smooth

function14 1

w∗ = argmax
w

L(X;w) =
∑

(xi ,xj )∈N (X;ϵ)

log
{
1+ e−f (xi ;w)f (xj ;w)

}
.

Therefore, we have the gradient of L(X;w) w.r.t w

∇wL = −
∑

(xi ,xj )∈N (X;ϵ)

[
1+ e−f (xi ;w)f (xj ;w)

]−1[
xiw

T xj + xjw
T xi

]
= −

∑
(xi ,xj )∈N (X;ϵ)

[
(wT xj)xi + (wT xi)xj

]
/
[
1+ e−(w

T xi)(w
T xj )

]
.

9.2.1 Speedup Iteration

The current updating strategy is not efficient, many alternative method can be adopted

to possiblely speed up the optimization.

• Eliminate redundant features, i.e. zero padding features (e.g. the number or per-

centage of votes that put both a and b at the first place) or strongly related features

are eliminated.

• Mutual neighbor pairs receive higher weights for their mutual-strength relations.

Zero padding features are assigned zero weight, and the features in favorite places

are given higher weights (ordered weight for the positional features).

• Approximated analytic solution to the optimization problem.

• Alternative smooth functions to approximate an indicator function.

1Alternatively, we can approximate it with a logistic function25

[[x > 0]] ≈ [1+ e−αx]−1,

where α > 0 is a scale constant. A larger α makes the approximation closer to the indicator function, and

tends to be more non-smooth14.
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• Initial weighting strategy, e.g. the maximum pairwise condordance, the angular

histogram distribution method (set a neighbor-pair as the basis vector, construct an

angular histogram over all neighbor pairs relative to the basis vector, the the most

dense norm vector is selected as the initial weight for the linear separator) , ordered

and ℓ1 or ℓ2 normalized weighting constraints, inheriting separator from the parent

node. Another method is similar to the approach in Boosting method, the closest

neighbor-pairs are assigned higher weights so that be selected at high priority at the

next iteration, because these pairs are the hardest ones to separate.

• Using different distance kernel function to measure the geometric nearness, includ-

ing the Gaussian kernel based on the Euclidean distance

KGaussian(x,y) = exp
{
−
d2Euclidean(x,y)

2σ2

}
,

and the Entropic divergence kernel based on Kullback-Leibler divergence (or rela-

tive entropy)

KEntropic(x,y) = exp
{
−
d2KL(x,y)

2σ2

}
.

9.2.2 Generalization

Borda rule can be presented with a multi-variate decision tree, and we handcraft linear

functions for Borda rule, and directly generating multidimensional feature vectors. Then,

labeling these data points with the handcrafted functions to construct the training set.

Empirically, if we could learn Borda rule with high enough accuracy, it indicates that

the number of representative data points is the key to learn the general scoring rule,

including the Condorcet method with high generalization. The simulation with a smaller

number of voters fails to provide the structure for the preference profiles.
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9.2.3 Parameters & Hyper-parameters

To grow a decision tree, we have to optimize many parameters or hyper-parameters, in-

cluding the maximum depth dmax, the maximum number of leaf nodes lmax, the minimum

size of each leaf node lsz, the measure used to split variable sM, the minimum split size

ssz, whether tree pruning is required. For the case of maximum cutting plane method,

additional parameters are introduced: the number K of nearest neighbors or the thresh-

old of distance d̄ to define the neighborhood, the approximation smooth function f of

the indicator function, the method to optimize the objective function (batch, mini-batch

or stochastic gradient descent method), the learning rate η, the maximum iterations nmax

in searching a local optimal cutting plane (or separator), the stop criterion in terms of

misclassification error or cutting ratio or the surrogate objective value, the regularization

coefficients λ1 > 0 for ℓ1 and λ2 > 0 for ℓ2 (if regularization is available).

9.2.4 VC-Bound

We are studying the misclassification probability bounds for decision trees, especially for

multivariate decision trees. Based on the bound, we can estimate the generalization error

(a.k.a out-of-sample error) and estimate the sufficient number of training set required for

a specific thresholded error bar ϵ.8 shown that with high probability any decision tree

of depth no more than d that is consistent with n training examples has misclassification

probability no more than O( | logn|n

√
M · dVC(C) · logd), where C is the class of node deci-

sion functions, and M is the effective number of leaves, which is smaller than L the true

number of leaf nodes.

9.2.5 Boolean Functions Learning

Each decision tree is a Disjunctive Normal Form (DNF) – a disjunction of conjunctive

clauses. It is very useful in automated theorem proving.
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10 Multi-Class Perceptron

Each class is related to a predictor and data points are classified based on the predictions

from all predictors. The predictor which produce the largest prediction value will assign

data points the corresponding label.

Suppose there are K classes in prediction, and the corresponding predictors are

fk(x) = wTk x.

Given a data point x, it has a label ŷ according to the predictions by all the K predictors

ŷ = argmax
k

fk(x).

The multi-class perceptron algorithm is very straightforward, just like the perceptron

algorithm in binary classification. No need to compute gradients, it updates weights by

adjusting the weight vectors when there is misclassified data points. Suppose there is a

training data point (x,y), which is unable correctly classified by the predictors, i.e. y , ŷ.

The algorithm update the weights of the predictor fy and fŷ as follows wy = wy + ηx,

wŷ = wŷ − ηx,

where η > 0 is a pseudo-learning rate to control the step-size in updating the existing

weights.

39



11 Deep Neural Decision Forests11

• x ∈ X: an input example

• y ∈ Y : an valid label

• I: the internal or decision nodes

• L: the terminal or leaf nodes

• ℓ ∈L: one leaf node

• i ∈ I: one decision node

• k: the depth of the decision tree (root node is the zeroth layer)

• n: the number of decision nodes

• m: the dimension of the input x

• T : the deep neural decision tree

• θi ∈Rm: the weight of the decision node i

• di(x;θ): the probability of x goes into the left branch of i

• fi(x;θ): the decision function of node i for x

• bil ,bir : the nodes belonging to the right (left) branch of i

• µℓ(x;θ): the probability of x reaching to the leaf node ℓ

• πℓ(y): the probability of having the label y at the leaf node ℓ

• PT (y|x;θ,π): the probability of assigning x with the label y
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There are some important properties or close relations between different variables. At

each leaf node, there is a probability distribution over the labels Y , and we have∑
y∈Y

πℓ(y) = 1, ∀ℓ ∈L.

At each decision node, for any x, its probability of reaching different leaves could be that∑
ℓ∈L

µℓ(x;θ) = 1.

With the decision function, the probability of turning left is

di(x;θ) = σ (fi(x;θ)) =
1

1+ e−fi(x;θ)
,

and the probability of turning right is

d̄i(x;θ) = 1− di(x;θ) =
1

1+ efi(x;θ)
.

Actually, fi(x;θ) could have many complex structure, e.g. neural network. Here, we just

adopt one simplified version, which is a linear function, i.e. fi(x;θ) = θTi x, θi becomes

the only effective parameter.

To minimize the log-form loss over the training set, we adopt the stochastic gradient

descending method. Here the function is defined as follows:
L(θ,π;D) =

∑
(x,y)∈D

L(θ,π;x,y)/|D |

L(θ,π;x,y) = − logPT (y|x;θ,π)
(9)

Here the decision model of the decision tree could be viewed as an average of the predic-

tions of each leaf node, i.e.

PT (y|x;θ,π) =
∑
ℓ∈L

µℓ(x;θ)πℓ(y). (10)

where

µℓ(x;θ) =
∏
i∈I

di(x;θ)
I(ℓ∈bil)d̄i(x;θ)

I(ℓ∈bir ). (11)
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11.1 Gradient w.r.t θ

The neural decision tree contains two types of parameters, one from decision nodes and

the other from leaf nodes. We compute the gradient of the loss function with respect to θ

and π:

∂L(θ,π;x,y)
∂θi

= − 1
PT (y|x;θ,π)

∂PT (y|x;θ,π)
∂θi

= − 1
PT (y|x;θ,π)

∑
ℓ∈L

πℓ(y)
∂µℓ(x;θ)
∂θi

(12)

Let’s focus on µℓ(x;θ) and have an equivalent transformation

µℓ(x;θ) = elogµℓ(x;θ) = e

∑
i∈I

[
I(ℓ∈bil) logdi(x;θ)+I(ℓ∈bir ) log d̄i(x;θ)

]
,

Then, we can obtain the derivation of µℓ(x;θ) w.r.t θi

∂µℓ(x;θ)
∂θi

= µℓ(x;θ)
[
I(ℓ∈bil)
di(x;θ)

− I(ℓ∈bir )
d̄i(x;θ)

]
∂di(x;θ)
∂θi

= µℓ(x;θ)
[
I(ℓ ∈ bil)d̄i(x;θ)− I(ℓ ∈ bir)di(x;θ)

]
∂fi(x;θ)
∂θi

.
(13)

Plugging it into the expression of ∂L(θ,π;x,y)/∂θi , we could yield the following result

∂L(θ,π;x,y)
∂θi

=
∑
ℓ∈L

µℓ(x;θ)πℓ(y)
PT (y|x;θ,π)

[
I(ℓ ∈ bir)di(x;θ)− I(ℓ ∈ bil)d̄i(x;θ)

]∂fi(x;θ)
∂θi

. (14)

11.2 Gradient w.r.t π

Similarly, we could derivate the gradient of L(θ,π;x,y) w.r.t π. Here, for πℓ(y)

∂L(θ,π;x,y)
∂πℓ(y)

= − 1
PT (y|x;θ,π)

∂PT (y|x;θ,π)
∂πℓ(y)

= − µℓ(x|θ)
PT (y|x;θ,π)

.
(15)
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11.3 Updating Rule

Let 
Aℓ(x,y) =

πℓ(y)µℓ(x|θ)
PT (y|x;θ,π)

, ℓ ∈L,

Ail(x,y) =
∑
ℓ∈L

Aℓ(x,y)I(ℓ ∈ bil), i ∈ I,

Air(x,y) =
∑
ℓ∈L

Aℓ(x,y)I(ℓ ∈ bir), i ∈ I.

The parameter π will be updated based on the following rule

π
(t+1)
ℓ (y) = 1

Z
(t)
ℓ

∑
(x,y′)∈D

I(y′ = y)
π
(t)
ℓ (y)µℓ(x|θ)
PT (y|x;θ,π(t))

= 1

Z
(t)
ℓ

∑
(x,y′)∈D

I(y′ = y)A
(t)
ℓ (x,y).

(16)

The gradient w.r.t θi

∂L(θ,π;x,y)
∂θi

=
[
Air(x,y)di(x;θi)−Ail(x,y)d̄i(x;θ)

]∂fi(x;θ)
∂θi

, i ∈ I (17)

could also be computed from bottom to up, and we could update θi in consequent steps.

11.4 Steps

• θ(t), π(t)

• di(x;θ(t)) = σ (fi(x;θ
(t)
i ))

• µℓ(x;θ(t)) =
∏
i∈I
di(x;θ(t))I(ℓ∈bil)d̄i(x;θ(t))I(ℓ∈bir )

• PT (y|x;θ(t),π(t)) =
∑
ℓ∈L

µℓ(x;θ(t))π
(t)
ℓ (y)

• A(t)
ℓ (x,y) =

µℓ(x;θ(t))π
(t)
ℓ (y)

PT (y|x;θ(t),π(t))

• Batch: π(t+1)
ℓ (y) = 1

Z
(t)
ℓ

∑
(x,y′)∈D

I(y′ = y)A
(t)
ℓ (x,y)

• A(t)
il (x,y) =

∑
ℓ∈L

A
(t)
ℓ (x,y)I(ℓ ∈ bil)
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• A(t)
ir (x,y) =

∑
ℓ∈L

A
(t)
ℓ (x,y)I(ℓ ∈ bir)

• Stochastic: θ(t+1)
i = θ

(t)
i −α

[
A
(t)
ir (x,y)di(x;θ

(t))−A(t)
il (x,y)d̄i(x;θ

(t))
]
∂fi(x;θ)
∂θi

• (Mini-)Batch: θ(t+1)
i = θ

(t)
i −α

∑
(x,y)∈S⊂D

[
A
(t)
ir (x,y)di(x;θ

(t))−A(t)
il (x,y)d̄i(x;θ

(t))
]
∂fi(x;θ)
∂θi
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12 Neural Network

Artificial neural network is one promising technique to train a classifier. Based on specific

loss function, we have to derivate the gradients of the neural network on each layer w.r.t

weights. We introduce the detailed information on the gradients computing in multi-

layer neural network learning.

x2

x2

x3

xd

y1

y2

yK

Hidden HiddenInput Output

Fig. 4: A Neural Network of Four Layers

Considering a neural network with multiple layers G = {L0,L1, . . . ,LK }, where L0 is the

input layer, L1 is the first hidden layer, and LK is the output layer. Each layer contains

some nodes Lk = {nk1,nk2, . . . ,nkdk }, and dk = |Lk | is the number of nodes that parks at Lk,

k = 0,1, . . . ,K . Let X be the input space, Y be the output space. Obviously, X ∈Rd0 , |Y | =

dK . Moreover, let Θ be the parameter space, and the neural network can be formulated

as

f (·;Θ) : X 7→ Y .

The parameter space is hierarchical, with parameters distributed over the edges con-

necting layers close to each other. We denote wkij ∈ R the weight of the edge connecting

nk−1,j ∈ Lk−1 to nki ∈ Lk. Each layer has one activation function, which in general a sigmoid

function, denote as σk,k = 0,1, . . . ,K , and σ0(x) = x.

We introduce the classical back-prop algorithm on a fully connected multi-layerred neu-
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ral network. The algorithm contains two primary steps: forward feed propagation and

back-propagation. At the phase of forward propagation, an instance x is feed and propa-

gated over the network until reaching the output layer. The network produces a predic-

tion of the input instance, which most likely does not consistent with the true label y of

the input instance. At the phase of back propagation, the network will propagate the loss

of the prediction to the ground-truth label, iteratively adjust the weights of each layer

from the output to the input.

The input xki of node nki ∈ Lk is a weighted sum of the outputs zk−1 ∈ Rdk−1 of the prior

layer Lk−1, i.e.

xki =
dk−1∑
j=1

zk−1,jw
k
ij ,k = 1,2, . . . ,K ,

and the output zki of nki is a sigmoid transformation of xki with zki = σk(xki).

12.1 Forward Propagation

Given an instance (x,y) ∈ X ×Y , we have the forward propagation procedure



x1

x2
...

xd0


→
σ0



z1

z2
...

zd0


W 1

→
σ1



z11 = σ1(x11) = σ1(
d0∑
j=1

zjw
1
1j)

z12 = σ1(x12) = σ1(
d0∑
j=1

zjw
1
2j)

...

z1d1 = σ1(x1d1) = σ1(
d0∑
j=1

zjw
1
d1,j

)


· · ·

· · ·
W k

→
σk



zk1 = σk(xk1) = σk(
dk−1∑
j=1

zk−1,jw
k
1j)

zk2 = σk(xk2) = σk(
dk−1∑
j=1

zk−1,jw
k
2j)

...

zkdk = σk(xkdk) = σk(
dk−1∑
j=1

zk−1,jw
k
dk ,j

)



W k+1

→
σk+1 · · ·
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· · ·
WK

→
σK



zK1 = σK(xK1) = σK(
dK−1∑
j=1

zK−1,jw
K
1j)

zK2 = σK(xK2) = σK(
dK−1∑
j=1

zK−1,jw
K
2j)

...

zKdK = σK(xKdK ) = σK(
dK−1∑
j=1

zK−1,jw
K
dK ,j

)


and define the generic error function between the prediction of the network and the

ground-truth label y of x

e(x,y;Θ) = e
(
f (x;Θ),y

)
= e

(
zK1, . . . ,zKdK ;y1, . . . ,ydK

)
.

12.2 Back Propagation

To minimize the loss function, we utilize the stochastic gradient descend method. There-

fore, the gradients of e(x,y;Θ) w.r.t Θ = {W K ,W K−1, . . . ,W 1} should be computed and

then weights are updated based on delta-rule, where W k ∈ Rdk×dk−1 represents all the

weights of edges connecting Lk−1 and Lk with the following matrix form

W k =



wk11 wk12 · · · wk1,dk−1
wk21 wk22 · · · wk2,dk−1
...

... . . . ...

wkdk ,1 wkdk ,2 · · · wkdk ,dk−1


,∀k = 1, . . . ,K .

Considering the complex structure of the network, we derivate the gradients with chain

rule from LK to LK−1 until L1.

Let’s see the weight wKij between nK−1,j and nKi . The weight is independent to the other

weights in LK , but dependent on the output zKi and therefore the input xKi , then we can

obtain the gradient w.r.t wKij

∂e(x,y;Θ)

∂wKij
=
∂e(x,y;Θ)

∂zKi

∂zKi
∂xKi

∂xKi
∂wKij

=
∂e(x,y;Θ)

∂zKi
σ ′K(xKi)zK−1,j , (18)
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with the facts that zKi = σK(xKi), xKi =
dK−1∑
j=1

zK−1,jw
K
ij and

 ∂zKi/∂xKi = σ ′K(xKi),

∂xKi/∂wKij = zK−1,j .

Similarly, we obtain the gradient w.r.t wkij

∂e(x,y;Θ)

∂wkij
=
∂e(x,y;Θ)

∂zki

∂zki
∂xki

∂xki
∂wkij

=
∂e(x,y;Θ)

∂zki
σ ′k(xki)zk−1,j . (19)

There is one quite special aspect in calculation of the gradient w.r.t wkij is the derivate

∂e(x,y;Θ)/∂zki . The node nki is the very and the only node, from which the weight wkij
affects the error function e(x,y;Θ). Along the route propagating forward, the weight wkij
affects zki , then all nodes in Lk+1, therefore zk+1,1,zk+1,2, . . . ,zk+1,dk+1

, and each of which

can be viewed as a function of wkij . Following the chain rule

∂e(x,y;Θ)

∂zki
=
∂e(x,y;Θ)

∂zk+1,1

∂zk+1,1

∂zki
+
∂e(x,y;Θ)

∂zk+1,2

∂zk+1,2

∂zki
+ · · ·+

∂e(x,y;Θ)

∂zk+1,dk+1

∂zk+1,dk+1

∂zki
, (20)

and given the gradients ∂e(x,y;Θ)/∂zk+1,1,∂e(x,y;Θ)/∂zk+1,2, . . . ,∂e(x,y;Θ)/∂zk+1,dk+1

over all outputs of Lk+1, we obtain the gradients of e(x,y;Θ) w.r.t each weight in G.

We expand these terms and make the above equations more explicit. Based on the rela-

tions between these outputs of Lk and Lk+1
xk+1,j =

dk∑
i=1

zkiw
k+1
ji ,

zk+1,j = σk+1(xk+1,j),

we have the derivates

∂zk+1,j

∂zki
= σ ′k+1(xk+1,j)

∂xk+1,j

∂zki
= σ ′k+1(xk+1,j)w

k+1
ji ,∀j = 1,2, . . . ,dk+1,

and ∂e(x,y;Θ)/∂zki in Lk is a linear combination of all the gradients ∂e(x,y;Θ)/∂zk+1,j

in Lk+1 with importances αkij = σ ′k+1(xk+1,j)w
k+1
ji ,∀j = 1,2, . . . ,dk+1.
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Back-propagation procedure propagates the gradients of the error function to the out-

puts of LdK backward to the last hidden layer LdK−1 in a form of linear combination, then

the cumulated gradients are propagated again to the layer before its home layer, so on

and so forth, until the gradients signals are propagated to the input nodes. Meanwhile,

the weight vectors of each layer are updated using these local cumulated gradients with

certain updating rule.

12.3 Hyperparameters

The number of layers K > 2, the number of hidden nodes {d1,d2, . . . ,dK−1}, the activa-

tion functions {σ1,σ2, . . . ,σK }, the weight updating rule δ, the number of iterations m and

the learning rate η to update weights, the error function e, the penalty coefficient λ (if

regularization is available), and some other variables in some specific methods, such as

the batch-size b in the mini-batch gradient descent method, even the optimization algo-

rithms, are all hyperparameters require careful tuning.

12.3.1 Activation Function σ

The most commonly used activation functions include the rectifier, logistic function, the

softmax function, and the gaussian function. The logistic regression model can be im-

plemented using a neural network of an input layer, one output node with a logistic

activation function. The back propagation algorithm for calculating a gradient has been

rediscovered a number of times, and it is a special case of a more general technique called

automatic differentiation in the reverse accumulation mode.

12.3.2 Error Function e

The error function can be smooth or non-smooth based on its application and the learn-

ing algorithm. The most popular error functions include the squared error function, the
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misclassification function, and the cross entropy error function. The non-convexity of the

error function was long thought to be a major drawback, however12 argued that it is not

in many practical problems.
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13 Evolutionary Strategy

Whereas RL algorithms like Q-learning and policy gradients explore by sampling actions

from a stochastic policy, Evolution Strategies (ES) derives learning signal from sampling

instantiations of policy parameters28 (OpenAI).

Let F denote the objective function acting on parameters θ. ES algorithms represent the

population with a distribution over parameters Pψ(θ) – itself parameterized by ψ and

proceed to maximize the average objective value η(ψ) = Eθ∼Pψ(θ)F(θ) over the popula-

tion by searching for ψ with stochastic gradient ascent. Similar to RL, NE takes gradient

steps on ψ with estimator

∆ψη(ψ) = Eθ∼Pψ(θ)[F(θ)∆ψ logPψ(θ)].

If F is the return function in RL, θ will be the parameter of a policy function πθ. Let

Pψ(θ) be a multivariate Gaussian with mean ψ and fixed covariance σ2I , we can write η

in terms of a mean parameter vector θ: η(θ) = Eϵ∼N (0,I)F(θ+ σϵ), and optimize η with

the gradient estimator

∆θη(θ) =
1
σ

Eϵ∼N (0,I)[F(θ+ σϵ)ϵ].
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14 Preference Recommendation

Preference recommendation is made based upon the data collected using OPRA. OPRA

provides a default ranking to users or voters, but they may change the ranking when

the recommended rankings are not their true preferences. It will takes them amount

of time to adjust from the recommended rankings to their favorite rankings before the

submission.

Suppose the number of users involved into the voting is large enough, we could estimate

the probability distribution of various rankings over the same candidates appeared in the

poll. Assuming that all voters reveal their real preferences during the poll, we expect that

the system could recommended each voter a ranking as close to his or her true prefer-

ence as possible, such that the overall operating time before casting a vote could reduce

drastically.

It is an optimization problem, searching an optimal ranking π∗ that requires a minimum

expected operating time:

π∗ = argmin
π∈Π[m]

∑
σ∈Π[m]

P (σ )L(π,σ ;θ),

where P (σ ) is the probability distribution of possible rankings, and it can be estimated

based on the existing voting outcomes to date. If the number of voters is large enough,

the estimation can be very accurate. L(π,σ ;θ) is the cost (e.g. time) of voting for a voter,

given her true preference is σ and the recommended preference ranking is π. The prob-

lem consists of two sub-problems, one is the estimation of the distribution of preference

rankings P (σ ), another one is the estimation of voting cost.

The recommendation model is built upon two assumptions:

• all voters reveal their true preferences in voting

• the discrepancy between the true and the recommended rankings determines the

voting cost; other factors, e.g. the characteristic differences of voters are ignored
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The log data we can collect fromOPRA including the time duration associated to different

combinations of a truth preference ranking and the recommended preference ranking.

We will design some recommendation models and verify them using the collected data. If

the method is proved to be effective, it will be evaluated with some paid experiments. The

final product should be a well-designed web-interface, and we outsource the experiments

using Amazon Turk and collect rich data to verify our conclusion.

Given N historical voting entries D = {σi ,πi , ti}Ni=1, with a triple represents the true pref-

erence ranking σi , the recommended initial rankings πi , and the required voting time ti

for voter vi . Also, we have trained a time predictor T (σ ,π;θ∗) to fit current data set D

which minimizes the voting time on average

θ∗ = argmin
θ∈Θ

1
N

N∑
i=1

L(T (σi ,πi ;θ), ti).

We can train the predictor as a regression problem or a classification problem by dis-

cretising the continuous time. There is a brute force method with m small number of

candidates for full rankings. It’s to traverse overm! rankings, compute the voting cost for

each pair of initial and final rankings. Then, the initial ranking with minimum average

voting cost for all possible final rankings are selected as the recommendation. However,

it’s very hard for large m, or partial rankings.

How about a special voting rule which aggregates those historical votes such that it satis-

fies some good properties?
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15 Hyper-parameter Optimization

Deep neural network involves setting up the architecture of the network, including the

depth of the network, choice of connectivity per layer (convolutional, fully connected,

drop out et al), choice of optimization algorithms (SGD, Adam) and recursive choice of

parameters (learning rate, momentum, eta).

Hyperparemeter optimization refers to automatically finding a good setting of these pa-

rameters. Stochastic gradient descent method is good enough to optimize the continuous

parameters. It’s more challenge to optimize the discrete parameters, and existing ap-

proaches are the Bayesian optimization, multi-armed bandit algorithm and random search.

15.1 Bayesian Optimization

Bayesian optimization approach assumes that there exists a prior distribution of the loss

function, and keeps updating the prior distribution based on new observations. Each new

observation is selected according to a query function, which balances exploration and

exploitation such that either the new observation gives us better outcome or provides us

with more information about the loss function. The most popular Bayesian optimization

packages is Spearmint.

15.2 Multi-armed Bandit

Hyperband is a general version of the successive halving algorithm, an extension of the

Multi-armed bandit algorithm on randomly selected configurations.
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15.3 Random Search

15.4 Spectral Approach

The spectral approach is built upon harmonic analysis of Boolean functions, and tries

to fit a sparse polynomial function to the discrete, high dimensional function which maps

hyper-parameters to loss, and then optimize the resulting sparse polynomial.

First quasi-polynomial time algorithm for learning decision trees under the uniform dis-

tribution with polynomial sample complexity, the first improvement in over two decades.
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