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Network science, has its root in graph theory, is evolving to be a multidisciplinary re-

search field. It studies the network representations of physical, biological, and man-made

systems, and designs models to reproduce and predict them1. One key characteristic of a

complex network is its degree distribution Pk, i.e, the probability that a randomly selected

node has k links2. Based on degree distribution, many complex networks in real world,

including communication networks3,4, transportation networks5,6, Internet7, social net-

works8 and biological networks9–12 are characterized by a power-law degree distribution

Pk = Ck−γ , where the scaling exponent γ is typically in the range 2 < γ < 3. These net-

works are scale-free7,13–17, greatly vary in size and structural complexity, but similar in

that most nodes have just a few connections, and some have a vast amount of links. For

instance, in the cellular metabolic network, most molecules participate in just one or two

biochemical reactions, and some molecules, such as water and adenosine triphosphate are

discovered in most reactions15,18. It forms a striking contrast to random networks that

follow a bell-shaped Poisson degree distribution Pk = e−〈k〉〈k〉−k/k!, where most nodes

have approximately the same number of links.

An interesting research topic in network science is how to design a network model, such

that the generated networks are ensured to have some desired properties, e.g. in topolog-

ical structure, following a particular degree distribution, or in dynamical evolving, being

robust to random failures and targeted attacks.

There are many network models for different complex systems. The most well-known is

Erdős-Rényi (ER) model with two equivalent definitionsG(N ,L) andG(N ,p) of a random

network19,20. The G(N ,L) model fixes the total number of links, and connects N nodes

with L randomly selected links; the G(N ,p) model fixes the probability p, wires each pair

of N labeled nodes with probability p. Both produces random networks with a Poisson

distribution and the average degree 〈k〉 ≈ pN , where p is equivalent to the percentage that

L links account for in all pairs of nodes, e.g. p = 2L/N (N − 1).

The scale-free networks are pervasive. In order to produce scale-free networks, Barabási-

Albert (BA) model is proposed in 199921. It includes two simple mechanisms: growth and
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preferential attachment, where the growth mechanism adds a new node with m edges to

existing nodes at each time step, the preferential attachment mechanism specifies the

linking rule and attaches links between the newly added nodes and existing ones with

probability Π(ki) = ki/
∑
j kj , where the higher degree nodes are favored. However, BA

model fails to explain how latecomers stand out, e.g. Google in search engine market

and Facebook in social media2,22. To fix the issue, Bianconi-Barabási model23 introduces

a fitness parameter ηi for each node, and considers both the fitness and the degree of

existing nodes to build connections for new nodes with probability Π(ki) = kiηi/
∑
j kjηj .

Besides, there are many other variants for the scale-free networks16,24–27, e.g. (1) adding

second-order preferential attachment to the wiring probability26, and (2) connecting the

newly added node with the m neighbors of a randomly picked existing nodes28.

The real world complex networks have diverse degree distributions, including but not

limited to a Poisson or power-law distribution. The nuclear reaction network is such an

exception, showing a bimodal degree distribution. The degree distribution has been ob-

served in other real-life cases29,30, e.g. the mobile ad hoc networks on the university

campus bimodal degree distribution with the modes a factor of 10 apart31, the degree

distribution of the gel network changes from unimodal to bimodal as temperature in-

creases32,33, the ‘stable-yet-switchable’ behavior in neural networks is found to be most

stable in bimodal networks34, and the rich-club networks35,36 are also bimodal with high

degree hub nodes and low degree peripheral nodes, is identified as the optimal network

for smart grids for which the synchronization cost is also minimum37. Many works have

extensively studied it for the analysis of network robustness2,29,38–44, but few have been

done on the network model for bimodal degree distribution29. To study the properties of

networks with bimodal degree distribution, the common reference models, including the

configuration model2,45–47, the hidden parameter model48,49 and the degree-preserving

randomization50 can be used to generate networks, and compared with the proposed

network model that brings the spatial information of nodes into consideration.
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