
CSCI 6220: Randomized Algorithms

Chunheng Jiang

December 20, 2018

1 Asymptotic Analysis

Asymptotic analysis concentrates on the change in running time when increasing the

size of an algorithm’s inputs, e.g. double the input size. It avoids the perturbation from

machines in analysis.

Definition 1.1 (Asymptotic Notation). For a function f (n), three sets of functions

O(f (n)) =

{
g(n)

∣∣∣∃ϵ > 0,N > 0,s.t.|g(n)| ≥ ϵ|f (n)|,∀n ≥N

}
,

Ω(f (n)) =

{
g(n)

∣∣∣∃ϵ > 0,N > 0,s.t.|g(n)| ≤ ϵ|f (n)|,∀n ≥N

}
,

Θ(f (n)) =

{
g(n)

∣∣∣∃ϵ > 0,N > 0,s.t.|g(n)|= ϵ|f (n)|,∀n ≥N

}
,

are defined to express the asymptotic behavior of an algorithm’s running time in terms of upper

bound, lower bound, both the upper bound and the lower bound, respectively.

To be clear, p(n) ∈ o(n) implies that ∀ϵ > 0, ∃N , s.t. 0 ≤ p(n) < ϵn,∀n ≥N .

Suppose an algorithm requires at least
√
logn/n steps, its complexity is Ω(

√
logn/n).

Another algorithm requires at most n2 rounds, therefore has complexity of O(n2).

1

2 Equalities and Inequality Bounds

• Binomial Coefficients:

(p+ q)n =
∑n

k=0 (
n
k)p

kqn−k,

(nk) = (n
n−k) =

n!
k!(n−k)! ,∀n ≥ k ≥ 0.

• Power Series Expansions:

ex = 1+ x+ x2
2! +

x3
3! + · · ·

ln(1+ x) = x − x2
2 + x3

3 −
x4
4 + · · ·

(1− x)−1 = 1+ x+ x2+ x3+ x4+ · · ·

• Stirling’s Formula:

n! =
√
2πn(

n
e
)n(1+

1
12n

+O(
1
n2

)).

• Let n ≥ k ∈N+.

(
n
k
)k ≤

(
n
k

)
≤min

{
(
en
k
)k,

nk

k!

}
.

• Let m ≥max{n,n+ k}. (
m
n

)(
m−n
k

)
=

(
m

n+ k

)(
n+ k
k

)
.

3 Randomized Algorithms

The design and analysis of a randomized algorithm is to show that the randomized be-

haviors in execution is likely to be good, on every input. A randomized algorithm makes

random choices during execution and its behaviors vary even given the same inputs.

However, a deterministic algorithm will output the same outputs when given the same

inputs. It follows a fixed procedure and provides deterministic output. Also, the ran-

domized algorithms are different from the probabilistic analysis of algorithms, where the

input is assumed to be drawn from a specific probability distribution, and show that the

algorithm works for most inputs.

2

Randomized algorithms can be roughly categorized into two classifications: the Las Vega

algorithms and the Monte Carlo algorithms.

3.1 Las Vegas Algorithms

A Las Vegas algorithm always produce the correct answer, but its running time is a ran-

dom variable whose expectation is bounded.

3.2 Monte Carlo Algorithms

A Monte Carlo algorithm runs for a fixed number of steps, and produces an answer that

is correct with a lower-bounded probability.

These probabilities and expectations are determined by the random choices and indepen-

dency of the inputs. Therefore, the repetitions of Monte Carlo drives down the failure

probability exponentially.

A Las Vegas algorithm can be converted into a Monte Carlo algorithm via early determi-

nation.

3.3 Applications

1. data structures: sorting, order statistics, searching

2. graph algorithms: minimum spanning trees, shortest paths, min-cut

3. geometric algorithms and mathematical programming: manipulation of geometric ob-

jects, faster algorithms for linear programming, rounding linear program solutions

to integer linear program solutions

4. probabilistic existence proofs: show that a combinatorial object arises with non-zero

probability among objects drawn from a suitable probability space

3

5. derandomization: first design a randomized algorithm, then argue that it can be

derandomized to produce a deterministic algorithm

6. algebraic identities: polynomial and matrix identity verification, pattern matching,

interactive proof systems

7. number theoretic algorithms: primality testing, polynomial roots and factors

8. counting and enumerating: matrix permanent, counting combinatorial structures

9. parallel and distributed computing: deadlock avoidance, distributed consensus

4 Randomized QuickSort

QuickSort algorithm is an efficient sorting method, it places the elements of an array

in ascending order. It’s a divide and conquer algorithm, it picks a pivot element in each

step, and divides a larger set into two smaller subsets, s.t all elements in one subset is

smaller than the pivot element, all elements in another subset is greater than the pivot

element. It recursively applies the partition strategy to these subsets until all elements

are in order. The time complexity of QuickSort is O(n logn), and an easier randomized

QuickSort algorithm as indicated in Table 1 can obtain the same level complexity.

Theorem 4.1. The expected number of comparisons of RandQS is at most 2nHn.

Proof. The comparison operations happen in step 8 - 10. Let S(i) be the element in S

with rank i, i.e. the ith smallest element. Let Xij indicates whether there is a comparison

between S(i) and S(j) in the execution of RandQS, where j > i. The execution result

of RandQS is a binary tree, each node corresponds to a pivot element. Considering a

permutation π of the elements: visiting in up-bottom order, and then from left to right

within the same level. Then, π can be viewed as the order of picking pivot elements. If

the pair has a comparison, one of them must be the ancestor of another one. Also, all

4

other elements with ranks between i and j should not be picked earlier than either S(i)

or S(j). Otherwise, it will cause the partition of S(i) or S(j) to its two children, such that

there is no chance to make comparison. Therefore, we should consider all elements with

ranks from i to j, and compute the probability that either S(i) or S(j) are picked firstly,

which is P r(Xij = 1) = 2/(j − i+ 1).

The total number of comparison in the execution of RandQS is X =
∑n

i=1
∑

j>iXij , and its

expectation can be computed

E[X] =
n∑

i=1

∑
j>i

E[Xij] =
n∑

i=1

∑
j>i

P r(Xij = 1) =
n∑

i=1

n∑
j=i+1

2
j − i+ 1

≤
n∑

i=1

n∑
d=1

2
d
= 2nHn.

5

Algorithm 1 RandQS Algorithm
Input: A set S of n elements

Output: The elements of S in ascending order

1: function QS(S)

2: S1← ∅, S2← ∅ ▷ S1 and S2 are disjoint

3: Randomly pick a pivot element y

4: C← {y}

5: if |S |= 1 then

6: return C

7: end if

8: for i← 1 to |S | do

9: S1← S1 ∪ {S[i]} if S[i] ≤ y

10: S2← S2 ∪ {S[i]} if S[i] > y

11: end for

12: if |S1| , ∅ then

13: C←QS(S1)∪C ▷ recursively run QS on S1

14: end if

15: if |S2| , ∅ then

16: C← C ∪QS(S2) ▷ recursively run QS on S2

17: end if

18: return C ▷ C = S1 ∪ {y} ∪ S2, both S1 and S2 are sorted

19: end function

5 Binary Planar Partitions

Given n non-intersecting line segments in the plane build a small linear decision tree that

has (pieces of) at most one segment in each cell.

6

6 Cut Problem

Definition 6.1 (Cut). Given G = (V ,E), a cut in G is a partition S,T of V , s.t. S ∪ T = V

and S ∩ T = ∅. Let denote it as C(S,T) = {(u,v) ∈ E|u ∈ S,v ∈ T }.

Definition 6.2 (Min/Max-Cut Problem). Given G = (V ,E), find a partition S,T of V , min-

imizing/maximizing the size of cut C(S,T).

Algorithm 2 Karger Algorithm
Input: multigraph G = (V ,E), supernodes S← ∅

1: for each node v ∈ V do

2: set S(v) = {v} ▷ each supernode is a new node generated from a contraction

3: end for

4: while |V | > 2 do

5: choose an edge e = (u,v) of G uniformly at random

6: Contract(e)

7: end while

8: return cut (S(v1),S(v2)) from V = {v1,v2} of G

9: function Contract(e)

10: u,v← e

11: add a new vertex w to V , i.e. V ← V ∪ {w}

12: for each edge e′ ∈ E do

13: if e′ = e then

14: E← E − {e′} ▷ remove e from E

15: else if e′ share exact one end u or v with e then

16: replace the end u or v with w

17: end if

18: end for

19: S(w)← S(u)∪ S(v)

20: end function

7

Min/Max-Cut problem is an optimization problem, and it’s NP-hard. It’s associated to an

NPC decision problem: given a graph G = (V ,E) and an integer k, determine whether

there is a cut of size at most/least k in G.

Karger Algorithm (a.k.a Edge Contraction Algorithm) provides an efficient randomized

method to find the minimum cut. The method repeats and contracts O(n2 lnn) times,

retains the best cut with total cost O(n4 lnn). It ends with non-zero probability to find a

min-cut.

Theorem 6.1. The Karger algorithm as shown in Table 2 returns a global min-cut of G with

probability at least 1/(n2), where n is the number of vertices in G.

Proof. Suppose G has one unique global min-cut (A,B) of size k, i.e. there is a set C of

k edges with one end in A and the other in B. In each step, the algorithm performs a

contraction on an edge uniformly chosen at random. If an edge comes from C, it will fail

immediately to find the min-cut.

To get a global min-cut of G, the chosen edges must come from the edges outside of

C. To get an upper bound on the probability that an edge in C is contracted, we need

to know the number of edges of G. Notice that if vertex v has degree less that k, the

cut ({v},V − {v}) would be of size less than k, a contradiction occurs according to the

assumption. So |E| ≥ kn/2.

Let ϵi be the event that an edge outside of C is contracted in step i, 1 ≤ i ≤ n − 2. The

probability that the algorithm gives the global min-cut is

P r(ϵ1 ∩ ϵ2 ∩ · · · ∩ ϵn−2) = P r(ϵ1)P r(ϵ2|ϵ1) · · ·P r(ϵn−2|ϵ1 ∩ ϵ2 ∩ · · · ∩ ϵn−3).

We note that at the first step ϵ̄1 happens w/p at most k/(kn/2) = 2/n, then P r(ϵ1) ≥

1 − 2/n. At ith step, there are n − i (super)-nodes in the current graph. The probability

that none of the edge in C is contracted is P r(ϵ) ≥ 1 − k/(k(n − i)/2) = 1 − 2/(n − i),

∀i ≤ n− 2. Plugging into the above equality, we get

P r(ϵ1 ∩ ϵ2 ∩ · · · ∩ ϵn−2) ≥ (1−
2
n
)(1− 2

n− 1
) · · · (1− 2

3
) =

2
n(n− 1)

=

(
n
2

)−1
.

8

The algorithm fails to find a global min-cut w/p at most 1− 1/(n2). Repeatedly run it for

(n2) lnn times, the upper-bound of the failure probability will reduce to(
1− 1/

(
n
2

))(n2) lnn
≤ e− lnn =

1
n
.

Lemma 6.1. An undirected graph G = (V ,E) with n vertices has at most (n2) global min-cuts.

Proof. Let C1,C2, . . . ,Cr be all the global min-cuts of G. Let ϵi denote the event that Ci is

returned by the algorithm, and let ϵ = ∪ri=1ϵi denote the event that the algorithm returns

any global min-cut. According to the earlier discussion, P r(ϵi) ≥ 1/(n2), and each pair of

ϵi and ϵj are independent. Therefore, we have

P r(ϵ) = P r(∪ri=1ϵi) =
r∑

i=1

P r(ϵi) ≥ r/
(
n
2

)
.

It’s obvious, P r(ϵ) ≤ 1 and then r ≤ (n2).

7 SAT Problem

Definition 7.1 (Boolean Satisfiability Problem). A boolean satisfiability problem, a.k.a SAT

problem is a problem determining whether there is an assignment that satisfies a given Boolean

formula. If such assignment exists, the Boolean formula is called satisfied. Otherwise, it’s

unsatisfied.

Problem 7.1 (Sailor Problem). There are 40 sailors. After finish the tasks, they return back to

their beds randomly. What the expected number of sailors who choose their original bunk beds?

What the probability of no sailor chooses his or her original bunk?

Solution 7.1. (1) Let Xi is a binary indicator represents whether sailor i (1 ≤ i ≤ n) chooses

his or her original bed. Assuming that sailors’ choices are independent, i.e. multiple sailors

9

are allowed to pick the same bed. Since each sailor has one different original bed, therefore Xi

obeys Bernoulli distribution, i.e. P (Xi = 1) = 1/n and P (Xi = 0) = 1 − 1/n. The number

of sailors who choose their original beds could be written as X =
∑n

i=1Xi . According to the

linearity of expectation, we see that E(X) =
∑n

i=1E(Xi), and E(Xi) = P (Xi = 1) = 1/n,

then E(X) =
∑n

i=1E(Xi) = 1.

(2) We know that X =
∑n

i=1 obeys Binomial distribution, therefore we can compute the prob-

ability of X = m where 0 ≤ m ≤ n, i.e. P (X = m) = (nm)(1/n)m(1 − 1/n)n−m. Therefore, the

probability of no sailor chooses his or her original bunk bed is P (X = 0) = 1 −
∑n

m=1 P (X =

m) = (n0)(1− 1/n)n = (1− 1/40)40.

Problem 7.2. There are 100 strings in a box. In each step, two string ends are picked at

random, tied together and put back into the box. The process is repeated until there are no free

ends. What is the expected number of loops at the end of the process?

Solution 7.2. Let Xt be the number of loops in the box at step t and Yt be the number of free

ends in the box, where t = 0,1, Therefore, the number of strings with free ends is Zt = Yt/2.

When t = 1, X1 = 0, Y1 = 2n and Z1 = n. In each step, two string ends are randomly picked

and tied together. The operation will produce two possible outcomes, (i) the two ends come from

the same string, it will form a new loop; (ii) the ends come from different string, it will form a

longer string with two free ends.

Starting from step t, when case (i) occurs Xt+1 = Xt +1, and Xt+1 = Xt when case (ii) occurs.

Meanwhile, we have Yt+1 = Yt−2 and Zt+1 = Zt−1, the number of free ends reduces by 2, and

the number of strings with free ends reduces by 1. There are n free strings, and it terminates

after n steps.

Let Ut indicates a binary indicator to represent whether the random operation in step t forms a

new loop, i.e. Ut = {0,1}. To obtain a new loop, the two free ends randomly chose in step should

come from the same string. It’s easy to compute P (Ut = 1) = Zt/(
Yt
2) = 2Zt/[Yt ∗ (Yt − 1)] =

1/(Yt − 1), and P (Ut = 0) = 1− P (Ut = 0).

10

According to the above results, we can get the number of loops at the end of the process

Xn = X1+
n∑

t=1

Ut.

With the fact that E(Ut) = P (Ut = 1), we have

E(Xn) = X1+
n∑

t=1

E(Ut) =
n∑

t=1

P (Ut = 1) =
n∑

t=1

1/(Yt − 1)

= 1/(2n− 1) + 1/(2n− 3) + · · ·+ 1/3+ 1/1= H2n −Hn/2.

Problem 7.3. Roll a standard dice to generate a sequence d1,d2, . . . ,dR, where R is the first

integer s.t. dR is even. What’s the expected sum d =
∑

i di?

Solution 7.3. E(d) =
∑∞

k=1E(
∑

i(di)|R= k)P r(R= k). Since there are p = 1/2 probability

to get an even number in rolling a dice, i.e. P r(R = k) = (1/2)k−1(1/2) = (1/2)k, then

E(d) =
∑∞

k=1
∑

i E(di |R= k)P r(R= k) =
∑∞

k=1
∑

i E(di |R= k)2−k.

Let’s compute E(di |R = k), i = 1,2, . . . ,R. When i < R, di is odd, we get P r(di = 1|R = k) =

P r(di = 3|R = k) = P r(di = 5|R = k) = 1/3 and E(di |R = k) = (1+ 3+ 5)/3 = 3. When

i = R, di is even, and P r(di |R = k) = 1/3. The possible values for dR is {2,4,6} and the

expectation E(di |R= k) = (2+ 4+ 6)/3= 4. Therefore, we have

E(d) =
∞∑
k=1

[3(k − 1) + 4]2−k = 3
∞∑
k=0

k2−k + 4
∞∑
k=1

2−k.

The geometric distribution G(p) has expectation 1/p, and
∑∞

k=0 k2
−k = 2. As for

∑∞
k=12

−k =

1/2/[1− (1/2)] = 1. As a result, we have E(d) = 3 ∗ 2+ 4 ∗ 1= 10.

8 Coupon Collector Problem

Suppose there are n different types of coupons, and a coupon is chosen at random at each

trial. Each random coupon is equally likely be of any of the n types, and the random

choices of the coupons are mutually independent. To collect on of each type of coupon,

at least how many trails are required?

11

Let X be the number of trials required to collect at least one of each type of coupon.

We determine E[X]. Let Xi be the number of additional trials for another new type of

coupon while exactly i − 1 different types of coupon have been collected, 1 ≤ i ≤ n and

X =
∑n

i=1Xi . It’s obvious, Xi has geometric distribution with parameter pi . To be success,

it requires to collect a type of coupon which is different from previous i − 1 types. The

probability is pi = 1− (i − 1)/n.

At the beginning, no coupon is collected. To collect a new type of coupon, only one

additional trail is required, and the probability of being success is P r(X1 = 1) = p1 = 1.

Let’s compute the expectation for X

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

1
pi

=
n∑

i=1

n
n− i+ 1

= nHn.

Lemma 8.1 (Bounded Harmonic Number). The harmonic number Hn =
∑n

i=11/i satisfies

Hn = lnn+Θ(1).

Proof. Because f (x) = 1/x is monotonically decreasing, we apply the geometric proper-

ties of an integral operation over 1/x and have
n∑

k=2

1
k
≤ lnn=

∫ n

1

1
x
dx ≤

n∑
k=1

1
k
,

hence lnn ≤Hn ≤ lnn+ 1, we end the proof.

We analysis the probability that X derivates from its expectation nHn = n lnn+Θ(n) by

amount of cn, where c is real constant. Let ϵri denote the event that coupon type i is not

collected in the first r trials. Therefore,

P r(ϵri) = (1− 1
n
)r ≤ e−r/n.

Suppose the number of trials X required is greater than r = βn lnn, then at least one of

the events {ϵri }
n
i=1 must happen. Apply the union bound, we can write

P r(X > r) = P r(∪ni=1ϵ
r
i) ≤

n∑
i=1

P r(ϵri) ≤ ne−r/n = n−β+1.

When β = 2, P r(X > 2n lnn) ≤ 1/n.

12

9 Randomized Selection

10 Randomized Median Algorithm

Analysis the probability that the randomizedmedian algorithm fails, including 3 reasons:

• ε1: |{r ∈ R|r ≤m}| < 1/2n3/4 −
√
n,

• ε2: |{r ∈ R|r ≥m}| < 1/2n3/4 −
√
n,

• ε3: |C| > 4n3/4.

Therefore, P r(Fails) = P r(ε1 ∪ ε2 ∪ ε3) = P r(ε1) + P r(ε2) + P r(ε3)

11 Tail Bounds

Let {Xi}ni=1 be independent Poisson trails s.t. for 1 ≤ i ≤ n, P r(Xi = 1) = pi , where 0 < pi <

1. Then, for X =
∑n

i=1Xi , µ = E(X) =
∑n

i=1pi . If pi = p > 0,∀1 ≤ i ≤ n, {Xi}ni=1 are a.k.a

Bernoulli trails, and X is a Binomial r.v.

To bound the probability that a random variable deviates from its expectation, many

useful techniques are developed, e.g. Markov’s inequality and Chebyshev’s inequality.

There are several questions regarding the deviation of X from its expectation µ:

• given δ > 0, what’s the probability that X exceeds (1+ δ)µ?

• given a small ϵ > 0 (e.g. 0.01), how large need δ be s.t. P r[X ≥ (1+ δ)µ] ≤ ϵ?

To answer these questions, the Chernoff bounds was proposed. They are derived using

the Moment Generating Function (MGF), and extremely useful in designing & analyzing

randomized algorithms.

13

Algorithm 3 Randomized Median Algorithm
Input: A set S of n elements are a totally ordered university

Output: The median element in S, denoted m

1: R← uniformly sample ⌈n3/4⌉ elements from S with replacement

2: Sort R

3: d← the ⌈1/2n3/4 −
√
n⌉th smallest element in R

4: u← the ⌈1/2n3/4+
√
n⌉th smallest element in R

5: C← ∅ ▷ C = {x ∈ S |d ≤ x ≤ u}

6: nd ,nu← 0 ▷ nd = |{x ∈ S |x < d}|, nu = |{x ∈ S |x > u}|

7: function Compare(d,u,S)

8: for i← 1 to |S | do

9: nd ← nd + 1, if S[i] < d

10: nu← nu + 1, if S[i] > u

11: C← C ∪ {S[i]}, if d ≤ S[i] ≤ u

12: end for

13: if nd > n/2 or nu > n/2 or |C| > 4n3/4 then

14: return FAIL

15: else if |C| ≤ 4n3/4 then

16: Sort C

17: return m← (⌊n/2⌋ −nd + 1)th element in C

18: end if

19: end function

14

Definition 11.1 (Moment Generating Function). The expectation of etX is the moment gen-

erating function of X, and denoted as MX(t) = E[etX],∀t > 0.

Proposition 11.1. If {Xi}ni=1 are independent, and Y =
∑n

i=1 ciXi ,∀ci ∈R, then the PDF of Y

is the convolution of the PDF of {Xi}ni=1, and its MGF

MY (t) =
n∏

i=1

MXi
(cit),∀t ∈R. (1)

Proposition 11.2. E[Xn] =M
(n)
X (0).

Theorem 11.1 (Markov’s Inequality). If X is a random variable with expectation µX , then

P r(X ≥ t) ≤ µX/t,∀t > 0. (2)

Proof. According to the definition of expectation of X, we have

µX = E[X] =
∑
∀x
xP r(X = x)

=
∑
∀x≥t

xP r(X = x) +
∑
∀x<t

xP r(X = x)

≥
∑
∀x≥t tP r(X = x) = tP r(X ≥ t).

Divide both sides by t, we get P r(X ≥ t) ≤E[X]/t,∀t > 0.

Theorem 11.2 (Chebyshev’s Inequality). If X is a random variable with variance σ2
X , then

P r(|X −µX | ≥ tσX) ≤ 1/t2,∀t > 0. (3)

Proof. Let Y = (X −µX)2, then E(X −µX)2 = σ2
X . Applying Markov’s inequality, we get

P r(|X −µX | ≥ t) = P r(Y ≥ t2) ≤ µY /t2 = E(X −µX)2/t2 = (σX/t)2,

then P r(|X −µX | ≥ tσX) ≤ 1/t2.

Problem 11.1. Votes are misrecorded w/p p = 0.02, and there are 10,000 votes, what’s an

upper bound on the probability that 4% or more of the votes are misrecorded?

15

Solution 11.1. Let Xi = 1 if vote i is misrecorded, Xi = 0 otherwise. It’s a Bernoulli r.v with

parameter p = 2%. Let X =
∑n

i=1Xi be a binomial r.v, i.e. X ∼ B(n,p) where n = 10,000.

Therefore, E[X] = np = 200, V ar[X] = np(1 − p) = 196. Then, P r(X ≥ 4%n) = P r(X ≥

400) = P r(X −E[X] ≥ 200). According to the Chebyshev’s inequality,

P r(X −E[X] ≥ 200) ≤
V ar[X]

2002
=

196
2002

= 0.0049.

Problem 11.2. Let Xi be i.i.d r.v.s, 1 ≤ i ≤ n. Given µ = E(Xi) and σ2 = V ar(Xi). Suppose

X =
∑n

i=1Xi/n, show the best upper bound for P r(X ≥ δ), if δ > µ.

Proof. Because Xi are iid, then E(X) =
∑n

i=1E(Xi)/n = µ, σ2
X = V ar(Xi)/n = σ2/n.

Therefore, we have

P r(X ≥ δ) = P r(X −µX ≥ δ −µX) ≤ P r(|X −µX | ≥ (δ −µX))

≤ Var(X)/(δ −µX)2 = σ2

n(δ−µ)2 .

11.1 Chernoff Bounds

Theorem 11.3 (Upper Chernoff Bounds on Poisson Trials). Given n independent Poisson

trials {Xi}ni=1 with P r[Xi = 1] = pi ∈ (0,1), 1 ≤ i ≤ n, and the sum X =
∑n

i=1Xi has its

expectation µ= E(X) =
∑n

i=1pi . These bounds on the tail probabilities

P r[X ≥ (1+ δ)µ] ≤
[

eδ

(1+ δ)1+δ

]µ
,∀δ > 0 (4)

P r[X ≥ (1+ δ)µ] ≤ e−µδ
2/3,∀δ ∈ (0,1] (5)

P r[X ≥ R] ≤ 2−R,R ≥ 6µ (6)

hold.

The first bound is the strongest one, and from it we derive the others, which are easier in

statement and computing.

16

Proof. It’s obvious, P r[X ≥ (1+ δ)µ] = P r[etX ≥ et(1+δ)µ], ∀t > 0. According to Markov’s

inequality, P r[etX ≥ et(1+δ)µ] ≤ E[etX]/et(1+δ)µ. Because {Xi}ni=1 are independent, there-

fore {etXi }ni=1 are independent as well. Therefore,

E[etX] =
n∏

i=1

E[etXi] =
n∏

i=1

[pie
t + (1− pi)] =

n∏
i=1

[1+ pi(e
t − 1)].

With the fact that ex ≥ 1+ x and set x = pi(e
t − 1), we have

n∏
i=1

[1+ pi(e
t − 1)] ≤

n∏
i=1

exp
(
pi(e

t − 1)
)
= exp

(n∑
i=1

pi(e
t − 1)

)
= exp((et − 1)µ).

Thus, P r[etX ≥ et(1+δ)µ] ≤ E[etX]/et(1+δ)µ ≤ exp((et − 1)µ − t(1+ δ)µ). To obtain a tight

upper bound, we minimize the RHS of the inequality. Let f (t) = (et −1)µ− t(1+ δ)µ, we

minimize it by solving f ′(t) = µet − (1+ δ)µ = 0, and get t = ln(1+ δ) > 0, where f (t)

reaches its minimum since f ′′(t) = µet > 0. Plugging it to the above inequality gives

P r[X ≥ (1+ δ)µ] ≤ exp(δµ− ln(1+ δ)(1+ δ)µ) =

[
eδ

(1+ δ)1+δ

]µ
.

We show [eδ

(1+δ)1+δ]
µ ≤ e−3µδ

2/3. We define g(δ) = δ−(1+δ) ln(1+δ)+δ2/3, then g ′(δ) =

− ln(1+ δ) + 2/3δ, g ′′(δ) = 2/3 − 1/(1+ δ). With g ′′(1/2) = g ′(0) = g(0) = 0, g ′(1) =

2/3− ln2 < 0, we have

• δ ∈ (0,1/2): g ′′(δ) < 0, g ′(δ) < g ′(0) = 0,

• δ ∈ (1/2,1): g ′′(δ) > 0, g ′(δ) < g ′(1) < 0.

Above all, g ′(δ) ≤ 0,∀δ ∈ [0,1], thus g(δ) ≤ 0, and P r[X ≥ (1+ δ)µ] ≤ e−µδ
2/3.

To prove the last bound, let R= (1+ δ)µ ≥ 6µ, then δ ≤ 5, and applying the first bound

P r(X ≥ R) ≤
[

eδ

(1+ δ)1+δ

]µ
≤

[
e

1+ δ

]µ(1+δ)

≤
[e
6

]µ(1+δ)
≤ 2−R.

17

Theorem 11.4 (Lower Chernoff Bounds on Poisson Trials). Given n independent Poisson

trials {Xi}ni=1 with P r[Xi = 1] = pi ∈ (0,1), 1 ≤ i ≤ n, and the sum X =
∑n

i=1Xi has its

expectation µ= E(X) =
∑n

i=1pi . The bounds on the tail probabilities

P r[X ≤ (1− δ)µ] ≤
[e−δ

(1− δ)1−δ
]µ

(7)

P r[X ≤ (1− δ)µ] ≤ e−µδ
2/2 (8)

hold if 0 < δ < 1.

Proof. Apply Markov’s inequality with t < 0, we get

P r[X ≤ (1− δ)µ] = P r[etX ≥ et(1−δ)µ] ≤E[etX]e−t(1−δ)µ

=
∏n

i=1E[etXi]e−t(1−δ)µ ≤
∏n

i=1 e
pi(e

t−1)e−t(1−δ)µ

= e(e
t−1)µ−t(1−δ)µ.

Let t = ln(1− δ) < 0, we show that

P r[X ≤ (1− δ)µ] ≤
[

e−δ

(1− δ)1−δ

]µ
.

To show
[

e−δ

(1−δ)1−δ
]µ
≤ e−µδ

2/2 equivalently to show µ[−δ − (1 − δ) ln(1 − δ)] ≤ −µδ2/2. Let

f (δ) = −δ− (1− δ) ln(1− δ)+ δ2/2, we have f (0) = 0, f ′(δ) = ln(1− δ)+ δ, and f ′′(δ) =

1− 1/(1− δ) < 0. Since f ′(0) = 0, so f ′(δ) ≤ 0 in [0,1) and f (δ) ≤ 0.

Theorem 11.5 (Chernoff Bounds on Rademacher Distribution). Let {Xi}ni=1 be the inde-

pendent r.v.s with P r(Xi = 1) = P r(Xi = −1) = 1/2, {Xi} are a.k.a Rademacher random

variables. Let X =
∑n

i=1Xi . For any c > 0

P r(X ≥ c) ≤ e−c
2/2n (9)

P r(X ≤ −c) ≤ e−c
2/2n (10)

P r(|X | ≥ c) ≤ 2e−c
2/2n (11)

Proof. Applying Markov’s inequality, we have

P r(X ≥ c) = P r(etX ≥ etc) ≤E[etX]/etc =
n∏

i=1

E[etXi]/etc,∀t > 0.

18

For any t ∈R, E[etXi] = et/2+ e−t/2, we merge them using the Taylor’s series

et = 1+ t+ t2
2! +

t3
3! + · · · ,

e−t = 1− t+ t2
2! −

t3
3! + · · · ,

then E[etXi] = 1+ t2
2! +

t4
4! + · · · =

∑∞
i=0

t2i

(2i)! . The product of the even terms of (2i)! is∏i
n=1(2n) = 2ii! ≤ (2i)! and E[etXi] ≤

∑∞
i=0

(t2/2)i
i! = et

2/2. Thus, P r(X ≥ c) ≤ ent
2/2−tc. Let

t = c/n, then nt2/2− tc = −c2/2n, P r(X ≥ c) ≤ e−c
2/2n.

The symmetry of X leads to P r(X ≤ −c) ≤ e−c
2/2n and P r(|X | ≥ c) ≤ 2e−c

2/2n.

Theorem 11.6 (Chernoff Bounds on Bernounlli Distribution). Let {Yi}ni=1 be the indepen-

dent random variables with P r(Yi = 1) = P r(Yi = 0) = 1/2, {Yi} are a.k.a Bernounlli random

variables with p = 1/2. Let Y =
∑n

i=1Yi , then µ= n/2.

P r(Y ≤ µ− c) ≤ e−2c
2/n,∀0 < c < µ (12)

P r(Y ≤ (1− δ)µ) ≤ e−δ
2µ,∀0 < δ < 1 (13)

Proof. Let Xi = 2Yi − 1, it has the Rademacher distribution, X =
∑n

i=1Xi , then

P r(X ≤ −a) ≤ e−a
2/2n,∀a > 0.

Because P r(X ≤ −a) = P r(2Y −n ≤ −a) = P r(Y ≤ µ− a/2), let c = a/2, we have

P r(Y ≤ µ− c) ≤ e−4c
2/2n = e−2c

2/n.

Let c = δµ, we have P r(Y ≤ (1− δ)µ) ≤ e−2δ
2µ2/n = e−δ

2µ.

Corollary 11.1. Let X1,X2, . . . ,Xn be independent Poisson trials such that P r(Xi) = pi . Let

X =
∑

iXi and µ= E[X]. For 0 ≤ δ < 1,

P r(|X −µ| ≥ δµ) ≤ 2e−µδ
2/3. (14)

Corollary 11.2. Let X1,X2, . . . ,Xn be independent Bernoulli r.v.s such that P r(Xi = 1) =

P r(Xi = 0) = 1/2. Let X =
∑

iXi and µ= E[X] = n/2. For any 0 < c < µ,

P r(|X −µ| ≥ c) ≤ 2e−2c
2/n. (15)

19

Problem 11.3. Assigning n individuals to two groups: control group and treatment group.

Each individual is assigned to the control group with probability P (Xi = 1) = 1/2. Argue that

the size of the control group is n/2±O(
√
n lnn) with probability ≥ 1− 2/n.

Proof. Let Xi denote the ith individual is assigned to the control group. Then P r(Xi =

1) = P r(Xi = 0) = 1/2, X =
∑n

i=1Xi is the size of the control group, and µ= E[X] = n/2.

According to the Chernoff bounds P r(|X − µ| ≥ a) ≤ 2e−2a
2/n,∀0 < a < µ. The probability

P r(|X−µ| ≤ c
√
n lnn) = 1−P r(|X−µ| ≥ c

√
n lnn). Let a= c

√
n lnn, plugging into the above

inequality gives

P r(|X −µ| ≤ c
√
n lnn) ≥ 1− 2e−2c

2 lnn = 1− 2n−2c
2
.

Assign c = 1/
√
2, then P r(|X −µ| ≤ c

√
n lnn) ≥ 1− 2/n.

11.2 Applications

11.2.1 Set Balancing

The problem set-balancing is a.k.a two-coloring a family of vectors. Given A ∈ {0,1}n×m, find

a column vector b ∈ {−1,1}m to minimize ∥Ab∥∞. It arises in statistical experiment designs.

Each column of A represents an subject in the experiment, and each row represents a

feature. The vector b partitions subjects to two disjoint groups: the treatment group and

the control group, such that the number of subjects with each feature is roughly the same.

A randomized algorithm to search the vector b is independently, randomly choosing each

entry from {−1,1}, then ∥Ab∥∞ can reach O(
√
m lnn).

Theorem 11.7. For a random vector b with entries independently and with equal probability

chosen from {−1,1}, then

P r(∥Ab∥∞ ≥
√
4m lnn) ≤ 2

n
. (16)

Proof. For the ith row of A, 1 ≤ i ≤ n, the dot product of A’s ith row and the random

20

vector b

Zi =
m∑
j=1

aijbj .

Suppose there are k non-zero elements in the row vector of A, Zi becomes the sum of

k independent random variables with P r(bj = 1) = P r(bj = −1) = 1/2. Applying the

Chernoff bounds on Rademacher distribution of two tails, we have

P r(|Zi | ≥
√
4m lnn) ≤ 2e−4m lnn/2k ≤ 2e−2lnn =

2
n2

,

since m ≥ k. Considering all rows of A,

P r(∥Ab∥∞ ≥
√
4m lnn) = P r

(
∪ni=1 {|Zi | ≥

√
4m lnn}

)
≤

n∑
i=1

P r(|Zi | ≥
√
4m lnn) ≤ 2

n .

11.2.2 Permutation Routing on the Hypercube

A n-dimensional hypercube (or n-cube) is a directed graph G = (V ,E) with N = 2n nodes

s.t node i is immediately connected to j iff h(i, j) = 1, where h is the Hamming distance of

i and j in terms of binary representation of length n. The total number of directed edges

in G is |E|= 2nN because the out-degree of each node is exact n.

Permutation routing problem is a.k.a oblivious routing problem, where each node in G ini-

tially has one packet to deliever and is also the destination of exact one packet. Let d(i)

be the destination of the packet of node i. Table 1 demonstrates a permutation routing

problem on 3-cube. The two rows present the source and destination node, both are writ-

ten in the form of binary representation. One row is just a permutation of another row,

and it’s where the name of the problem comes from.

A routing algorithm assigns each pair of nodes a directed path – a sequence of directed

edges – connecting the pair. During the routing of packets, one edge may be on the path

of more than one packet and one edge can process only one packet per step, it will cause

21

Table 1: Permutation Routing Problem

i 000 001 010 011 100 101 110 111

d(i) 010 101 011 111 000 110 001 110

congestion and bottlenecks. To resolve the problem, the routing algorithm should also

specify a queueing policy to order packets in the queue and allows at most one packet to

pass through the directed edge in each step. If the permutation routing algorithm routes

packets only based on their destination, it’s called oblivious routing algorithm.

The performance of a routing algorithm can be measured with the maximum time, or the

number of parallel steps required to routing an arbitrary permutation routing problem.

Algorithm 4 n-Cube Bit-Fixing Routing Algorithm
Input: source i = (a1, . . . ,an) and destination d(i) = (b1, . . . ,bn) of the packet

1: function Route(i,d(i))

2: for k← 1 to n do

3: if ak , bk then

4: traverse the edge (b1, . . . ,bk−1,ak, . . . ,an)→ (b1, . . . ,bk−1,bk,ak+1, . . . ,an)

5: end if

6: end for

7: end function

Theorem 11.8. For arbitrary deterministic oblivious permutation routing algorithm on an

n-cube with N = 2n nodes each of out-degree n, there is an instance of permutation routing

requiring Ω(
√
N/n) steps to finish.

Lemma 11.1. Let the route of packet vi be ρi = (e1,e2, . . . ,eK). Let SI
i be the set of packets

(other than vi) whose routes intersect at least one of {e1,e2, . . . ,eK } in ρi in Phase I. Then, the

delay of vi is at most |SI
i |.

22

Algorithm 5 Two Phase Routing Algorithm
Input: source i = (a1, . . . ,an) and destination d(i) = (b1, . . . ,bn) of the packet

1: Phase I: randomly select σ (i), invoke ROUTE(i,σ (i))

2: Phase II: invoke ROUTE(σ (i),d(i))

Proof. Suppose n is even, and for packet vi with its source and destination of forms

i = ab = a1, . . . ,an/2,b1 . . . ,bn/2,

d(i) = ba= b1, . . . ,bn/2,a1, . . . ,an/2.

There is a node with address bb, and the routing algorithm will alway use it to route a

pair of ab→ ba. However, among N nodes, 2n/2 =
√
N have an address of the form bb.

The routing algorithm routes at most n packets for each node at each step, because each

node has n out-going edges. Therefore, routing all packets requires at least N/(n
√
N)

steps, it’s
√
N/n.

The time to deliver packet vi is at most n plus the delayed steps for queueing at interme-

diate node in ρi . We need to compute the expected delay.

We analysis the two phase algorithm, and fix the packet vi with a route ρi = (e1,e2, . . . ,eK)

of length K . Let Hj = 1 if a different ρj intersects ρi ; otherwise Hj = 0. Since the inter-

media destination is randomly chosen, {Hj} are independent Poisson trials. According to

the definition, we have

|SI
i |=

N∑
j=1

Hj .

For an edge e in G, let T (e) be the number of routes cross edge e. Then, the number of

routes intersects ρi should not be larger than the number of routes passing through at

least one edge in ρi , i.e.

|SI
i | ≤

K∑
t=1

T (et).

Therefore, we have E[|SI
i |] ≤

∑K
t=1E[T (et)], where K is also a random variable. Suppose

i = (a1,a2, . . . ,an), and σ (i) = (b1,b2, . . . ,bn), the times taken to deliver packet vi from i to

23

σ (i) is the Hamming distance between i and its intermediate destination σ (i). Let Zt = 1

if at , bt; otherwise Zt = 0, 1 ≤ t ≤ n. Further, K =
∑n

t=1Zt and E[K] = n/2 for {Zt} are

independent Bernoulli random variables with parameter 1/2.

Besides, ∀e ∈ E, T (e)s are the same, and thus independent from K . We get

E[|SI
i |] = E[E[|SI

i |
∣∣∣K]] ≤E[E[

K∑
t=1

T (et)
∣∣∣K]] = E[KT (e)] = E[K]E[T (e)] =

n
2

E[T (e)].

According to the definition

T (e) =
N∑

k=1

I(ρk crosses e) =
N∑

k=1

P r(ρk crosses e).

Let e = (b1, . . . ,bj−1,aj ,aj+1, . . . ,an) → (b1, . . . ,bj−1,bj ,aj+1, . . . ,an) corresponding the bit-

fixing on the jth entry. To cross the edge e, the origin of the routemust be (∗,∗, . . . ,∗,aj , . . . ,an)

and the destination of the route be (b1, . . . ,bj−1,bj ,∗,∗, . . . ,∗), where ∗-bit’s value does not

matter.

The possible number of routes with the specific form of origins are 2j−1, and for any fixed

origin (route), the probability that the destination of the route has the specific form is

P r(b1, . . . ,bj−1,bj ,∗,∗, . . . ,∗) = 2n−j/2n = 2−j , then

E[T (e)] = 2j−12−j = 1/2, (17)

E[|SI
i |] ≤ n/4. (18)

Let R = 3n/2 ≥ 6E[|S1|], P r(|SI
i | ≥ R) = P r(|S1| ≥ 3n/2) ≤ 2−R = 2−3n/2. Using union

bound for N packets, we get

P r
(
∪Ni=1 {|S

I
i | ≥ 3n/2}

)
≤N2−3n/2 = 2−n/2.

It’s for the Phase I, and Phase II runs Phase I backward. Therefore, we can conclude

that: with probability at least 1 − 2−n/2, all packets are delivered in at most n+ 3n/2 ∗

2 = 5n steps. The randomized 2-Phase routing algorithm can route all packets to their

destination in O(n) time with probability close to 1.

24

12 The Probability Method

The probability method is a way of proving the existence of an object. To prove the

existence, there are two important principles:

• Simple Counting: constructing an appropriate probability space S of objects, and

then show that the probability that an object in S with the required properties is

selected is positive. Since the probability is positive, it must exist.

• Averaging Argument: a random variable – in a discrete probability space – must

with a positive probability assume at least one value that is not greater than its

expectation, and at least one value that is not smaller than its expectation.

It’s applied to solve some complicated problems and requires many advanced techniques

for constructing proof.

Theorem 12.1. Given an undirected graph G = (V ,E) with n vertices and m edges. There is

a partition of V into S and T , s.t. at least m/2 edges cross S and T . That is, there is a cut with

value at least m/2.

Proof. We construct the cut by randomly assigning each vertices into S and T . Let Xi

denote whether an edge ei ∈ E crosses S and T , i.e. ∀i = 1,2, . . . ,m

Xi =

 1, ei crosses S and T ,

0, otherwise.

The probability that each edge crosses S and T is 1/2, because each vertex is assigned to

S or T is 1/2, and their membership is mutually independent.

The value of the cut V = S ∪ T should be C(S,T) =
∑m

i=1Xi and its expectation

E[C(S,T)] =
m∑
i=1

E[Xi] =m/2.

According to the expectation argument, there exists a cut of V inG, s.tC(S,T) ≥m/2.

25

To derandomized the randomized algorithm to construct a cut from G, we bound the

probability to find a cut with value at least m/2. Consider C(S,T) as a random variable,

it’s clear C(S,T) ≤m, we derive from the expectation

m/2= E[C(S,T)] =
∑m

i=1 iP r(C(S,T) = i)

=
∑m/2−1

i=1 iP r(C(S,T) = i) +
∑m

i=m/2 iP r(C(S,T) = i)

≤ (m/2− 1)
∑m/2−1

i=1 P r(C(S,T) = i) +m
∑m

i=m/2 P r(C(S,T) = i)

= (m/2− 1)P r(C(S,T) < m/2) +mP r(C(S,T) ≥m/2)

= (m/2− 1)(1− P r(C(S,T) ≥m/2)) +mP r(C(S,T) ≥m/2).

Let p = P r(C(S,T) ≥m/2), we have m/2 ≤ (m/2− 1)(1− p) +mp, then

p ≥ 1
m/2+ 1

.

It implies that we sample at most m/2+ 1 partitions, we can get a cut of V with value at

least m/2.

Determining a SAT formula has a solution is NP-hard, we find a weak solution which

satisfies as many clauses as possible.

Theorem 12.2. Given a set of m clauses, and assume the ith clause has ni literals, ∀i ≤m. Let

n=maxi ni , there is a truth assignment that satisfies at least m(1− 2−n) clauses.

Proof. Let Xi be the random variable denoting whether the ith clause is satisfied given

a random truth assignment. At random, we independently and uniformly assign values

{T ,F} to all variables in the SAT formula. We can get the probability that the ith clause is

satisfied, i.e. P r(Xi = 1) = 1− 2−ni , therefore E[Xi] = P r(Xi = 1). The number of clauses

that are satisfied by the assignment is X =
∑m

i=1Xi . Its expectation

E[X] =
m∑
i=1

E[Xi] =
m∑
i=1

(1− 2−ni) ≥m(1− 2−n).

The expectation argument shows that there exists a truth assignment s.t at leastm(1−2−n)

clauses are satisfied.

26

12.1 Second Moment Method

Theorem 12.3. If X is a non-negative integer-valued random variable, then

P r(X = 0) ≤
V ar(X)

(E[X])2
. (19)

Proof. Apply Chebyshev’s inequality,

P r(X = 0) ≤ P r(|X −E[X]| ≥E[X]) ≤
E[X −E[X]]

(E[X])2
=

V ar(X)

(E[X])2
.

12.2 Conditional Expectation Inequality

Theorem 12.4. Let X =
∑n

i=1Xi where each Xi is a Bernoulli random variable. Then

P r(X > 0) ≥
n∑

i=1

P r(Xi = 1)
E[X |Xi = 1]

. (20)

Proof. Let Y = 1/X if X > 0, and Y = 0 otherwise. It’s obvious, P r(X > 0) = E[XY]. Then

E[XY] =
∑n

i=1E[XiY] =
∑n

i=1

[
E[XiY |Xi = 0]P r(Xi = 0) +E[XiY |Xi = 1]P r(Xi = 1)

]
=

∑n
i=1E[XiY |Xi = 1]P r(Xi = 1) =

∑n
i=1E[Y |Xi = 1]P r(Xi = 1)

=
∑n

i=1E[1/X |Xi = 1]P r(Xi = 1) =
∑n

i=1[
∑

x
P r[X=x|Xi=1]

x]P r(Xi = 1)

≥
∑n

i=1
P r(Xi=1)∑

x xP r[X=x|Xi=1] =
∑n

i=1
P r(Xi=1)
E[X |Xi=1] ,

where the Jensen’s inequality is used since f (x) = 1/x is convex.

12.3 Lovász Local Lemma

Suppose a large number of events in the probability space happens with probability less

than 1, and there are independent from each other, there must exist a positive probability

that none of these events occur. The Lovász local lemma relax themutually independency

with a weak partially independency, and arrives the same conclusion.

27

Definition 12.1 (Dependency Graph). A dependency graph for a set of events E1,E2, . . . ,En

is a graph G(V ,E) such that V = {1,2, . . . ,n}, and for i = 1, . . . ,n, event Ei is mutually inde-

pendent of the events {Ej |(i, j) , E}.

Lemma 12.1 (Lovász Local Lemma). Let E1,E2, . . . ,En be a set of events, and assume that the

following hold

1. P r(Ei) ≤ p < 1,∀i = 1,2, . . . ,n

2. the degree of G is bounded by d

3. 4pd ≤ 1

Then

P r
(n∩
i=1

Ēi

)
> 0.

Proof. We note that P r
(∩n

i=1 Ēi

)
=

∏n
i=1 P r(Ēi |

∩i−1
j=1 Ēj). Let S ⊂ {1, . . . ,n}, we prove by

induction on s = 0,1, . . . ,n− 1 that

P r
(
Ek |

∩
j∈S

Ēj

)
≤ 2p < 1,∀k < S (21)

if |S | ≤ s. Based on it, we can proof P r
(∩

j∈S Ēj

)
> 0.

If s = 0, or S = ∅, P r
(
Ek |

∩
j∈S Ēj

)
= P r(Ek) ≤ p < 2p. Let’s show that it’s true for any

non-empty S. Based on the statement in (21) for s ≥ 1, we show P r
(∩

j∈S Ēj

)
> 0.

If s = 1, we can immediate get P r(Ēi) = 1− P r(Ei) ≥ 1− p > 0, which is not dependent on

the statement in (21). Assuming (21) holds for s > 1, w.l.o.g let S = {1,2, . . . ,s}, we show

P r
(∩s

i=1 Ēi

)
=

∏s
i=1 P r(Ēi |

∩i−1
j=1 Ēj)

=
∏s

i=1[1− P r(Ei |
∩i−1

j=1 Ēj)]

≥
∏s

i=1(1− 2p) > 0.

(22)

28

We show that (21) holds for s > 1. Let S1 = {j ∈ S |(k, j) ∈ E}, S2 = {j ∈ S |(k, j) < E}, FS =∩
i∈S Ēi . If S2 = S, Ek is mutually independent of the events Ēj ,∀j ∈ S, and thus

P r(Ek |FS) = P r(Ek) ≤ p ≤ 2p.

For |S2| < s, apply Bayes’ theorem, we have

P r(Ek |FS) =
P r(Ek ∩FS)

P r(FS)
=

P r(Ek ∩FS1 ∩FS2
P r(FS1 ∩FS2)

=
P r(Ek ∩FS1 |FS2)P r(FS2)

P r(FS1 |FS2)P r(FS2)
=

P r(Ek ∩FS1 |FS2)
P r(FS1 |FS2)

.

1. Denominator:

P r(FS1 |FS2) = P r(
∩

i∈S1 Ēi |FS2) = 1− P r(
∪

i∈S1 Ei |FS2)

≥ 1−
∑

i∈S1 P r(Ei |FS2) = 1− |S1|2p ≥ 1− 2dp ≥ 1/2.

Using the fact that |S1| ≤ d and 4dp ≤ 1, and the assumption P r(Ei |FS) ≤ 2p, |S | < s.

2. Numerator:

P r(Ek ∩FS1 |FS2) ≤ P r(Ek |FS2) = P r(Ek) ≤ p.

Therefore, P r(Ek |FS) ≤ 2p, ∀S with |S | ≤ s. Plug s = n in (22), we get P r
(∩n

i=1 Ēi

)
> 0.

Lemma 12.2 (General Lovász Local Lemma). Let G(V ,E) be a dependency graph for events

E1,E2, . . . ,En in a probability space. Suppose that there exist xi ∈ [0,1],∀1 ≤ i ≤ n such that

P r(Ei) ≤ xi
∏

(i,j)∈E

(1− xi).

Then

P r
(n∩
i=1

Ēi

)
≥

n∏
i=1

(1− xi).

Proof. Let S ⊂ {1,2, . . . ,n}. We first prove by induction on s = |S |= 0,1, . . . ,n− 1 that

P r(Ek | ∩j∈S Ēj) ≤ xi ,∀k < S.

The base case s = 0 or S = ∅ follows from the assumption on the probabilities P r(Ei). For

s ≥ 1, let S1 = {j ∈ S |(k, j) ∈ E}, S2 = {j ∈ S |(k, j) < E}, FS =
∩

i∈S Ēi . Apply the definition

of conditional probability,

P r(Ek |FS) =
P r(Ek ∩FS1 |FS2)

P r(FS1 |FS2)
.

29

1. Denominator: let S1 = {j1, j2, . . . , jr},

P r(FS1 |FS2) = P r(∩j∈S1Ēj |FS2)

=
∏r

t=1 P r(Ējt |FS2 ∩
t−1
u=1 Ēju)

=
∏r

t=1

[
1− P r(Ejt |FS2 ∩

t−1
u=1 Ēju)

]
≤

∏r
t=1

[
1− xjt

]
=

∏
j∈S1

[
1− xj

]
.

2. Numerator:

P r(Ek ∩FS1 |FS2) ≤ P r(Ek |FS2) = P r(Ek) ≤ xk
∏
j∈S1

[
1− xj

]
.

It follows that

P r(Ek |FS) ≤
xk

∏
j∈S1 (1−xj)∏

j∈S1 (1−xj)
= xk,

P r
(∩n

i=1 Ēi

)
=

∏n
i=1 P r(Ēi | ∩i−1j=1 Ēj) ≥

∏n
i=1(1− xi).

Problem 12.1. You are given an instance of k-SAT with n clauses, where each clause has k

literals. Show that if k > logn, then this is a satisfiable formula.

Proof. Let ϵi denote the event that clause i is not satisfied. There are k literals in each

clause, if clause i is not satisfied, i.e. none of the k literals is given the correct assign-

ment, and P r(ϵi) = 2−k. To be a satisfiable formula, all clauses should be satisfied. Its

probability P r(
∩n

i=1 ϵ̄i) = 1− P r(
∪n

i=1 ϵi) ≥ 1−
∑n

i=1 P r(ϵi) = 1−n/2k > 0,∀k > logn.

13 Derandomization

14 Data Structures

14.1 Treap

A treap is a randomized binary search tree (BST) in which each key is associated with

a random priority. Each treap satisfies both BST property and heap property. The tree is

30

maintained such that it’s a max-heap, i.e. each internal node’s priority is greater than any

of its children’s priorities, and each node has larger key than that of its left branch, and

smaller than that of its right branch.

Although it is not guaranteed to have height as O(logn), the idea of treap is to use ran-

domization and binary heap property to maintain a balance with high probability. Its

expected time complexity of search, insert and delete is O(logn). To make the related

analysis convenient, we assume the keys and priorities are all distinct.

Theorem 14.1. Given n pairs of keys and priorities, the shape of the treap is uniquely deter-

mined no matter what the ordering of insertation.

Theorem 14.2. The expected depth of any node xi in the random treap T is O(logn).

Proof. Let xi denote the node with the ith largest search key, d(xi) denote the depth of

node xi , i.e. the number of proper ancestors (exclusive itself) down-up to the root node.

Given a random treap T of n elements, x1 is the node with the largest key, and xn is

the node with the smallest search key. To analysis the expected height, we define an

indicator variable Aj
i presenting that xj is a proper ancestor of xi . Then, the depth of xi is

d(xi) =
∑n

j=1A
j
i , and E[d(xi)] =

∑n
j=1E[A

j
i] =

∑n
j=1 P r(A

j
i = 1).

To compute the expected depth requires to analysis the probability of one node being the

proper ancestor of another node.

Lemma 14.1. Given any two nodes xi and xj in T , ∀i , j ≤ n, xj is an ancestor of xi iff xj has

the highest priority among all xk where k is an index between i and j (inclusive).

Proof. Suppose either xi or xj is the root of T , it’s trivial to prove the statement because

the root of T has the global highest priority.

Suppose neither xi nor xj is the root of T , but xk is, k < {i, j}. There are two status for the

relation of xi and xj . Either they fall into the same left or right subtree of xk or belong to

two different subtrees of xk.

31

Assume they are in the same left or right subtree of xk. Since the subtree of xk is a smaller

treap, the same lemma can be applied. And the empty treap is a trivial base case.

Assume they belong to different subtrees of xk, w.l.o.g xj is in the left subtree of xk, then

i < k < j. And xj is not an ancestor of xi and indeed it does’t has the highest priority

among {xi ,xi+1, . . . ,xj}, but xk is an ancestor of xi and has the highest priority among

{xi ,xi+1, . . . ,xk}.

Each node in {xj ,xj+1, . . . ,xi} or {xi ,xi+1, . . . ,xj} has the same chance to be assigned the

highest priority, and since there are |i − j |+ 1 nodes in the set, we get

P r(A
j
i = 1) =

1
|i − j |+ 1

.

The expected depth of xi can be computed with the above Lemma∑n
j=1 P r(A

j
i = 1) =

∑i−1
j=1 P r(A

j
i = 1) +

∑n
j=i+1 P r(A

j
i = 1)

=
∑i−1

j=1
1

i−j+1 +
∑n

j=i+1
1

j−i+1 =
∑i

k=2
1
k +

∑n−i+1
k=2

1
k

= H(i)− 1+H(n− i+ 1)− 1 < log i+ log(n− i+ 1) < 2logn.

(23)

It indicates that E[d(xi)] ∈O(logn).

Lemma 14.2. Given a random treap T with n > 3 elements, the expected number of leaves in

T is 1+ (n− 2)/3; the expected number of nodes in T with two children is (n− 2)/3 and the

expected number of nodes in T with exactly one child is (n+ 1)/3.

Proof. Let L be the number of leaves in T , O be the number of nodes in T with one child,

and F be the number of nodes with two children. Then L + O + F = n. Considering

the edges in T , each node with exactly one child has one outgoing edge, and each node

with two children has two outgoing edge and those leaves do not have any outgoing edge.

The total number of edges is n − 1. Therefore, 2F + O = n − 1. Hence, F = L − 1 and

O = n− 2L+ 1.

If n= 1, the unique element must be a leaf node, and E[L] = 1. If n= 2, the two element

has the same chance to be a leaf node, therefore E[L] = 2 ∗ (1/2) = 1. Considering n ≥ 3.

32

Let Li be a random indicator to represent whether node i is a leaf. The number of leaves

can be written as L =
∑

i Li . To compute the expectation, it’s required to compute the

probability P r(Li = 1),∀1 ≤ i ≤ n. There are two special cases: when i = 1/n, the node

is leaf iff it has lower priority than node 2/n − 1, e.g P r(L1 = 1) = P r(Ln = 1) = 1/2.

When 1 < i < n, the node i is leaf iff it has the lowest priority among xi−1,xi ,xi+1, and

thus P r(Li = 1) = 1/3. Hence, E[L] = 2 ∗ (1/2) + (n − 2)/3 = 1+ (n − 2)/3. Taking

advantage the relations between F,O and L, we get E[F] = E[L] − 1 = (n − 2)/3 and

E[O] = n− 2E[L] + 1= n− 2− 2(n− 2)/3+ 1= (n+ 1)/3.

Problem 14.1. Given a random treap T with n elements, compute the expected length of the

left spine of T .

Proof. Let xn be the leaf of the left spine of T , then xn must be the smallest element in T .

The expected length of the left spine of T is the expected depth of xn, we have

E(length of the left spine of T) = E[d(xn)].

To compute the expected depth of xn in T , we apply the result in Eq.(23)

E[d(xn)] =
n−1∑
i=1

P r(Ai
n = 1) =

n−1∑
i=1

1
n− i+ 1

= H(n)− 1.

14.2 Skip List

Definition 14.1 (Leveling). A leveling with r levels of an ordered set S = {x1 < x2 < · · · < xn}

is a sequence of nested subsets (called levels) Lr ⊆ Lr−1 ⊆ · · · ⊆ L2 ⊆ L1, s.t. Lr = and L1 = S.

Definition 14.2 (Level). Given an ordered set S and a leveling for it, the level of any element

x ∈ S is defined as

ℓ(x) = max
1≤i≤r
{i|x ∈ Li}.

33

Adding two special elements {−∞,∞} to a given leveling of S defines a skip list of S. Each

element x ∈ S has ℓ(x) nodes in pile, and each level is presented as a sorted linked list.

Definition 14.3 (Random Skip List). For each x ∈ S, a fair coin is flipped repeatedly until a

tail appears. For every head, a copy of x is added to a higher level. Sort the elements in each

level and form a linked list for each level. In addition to its key and forward pointer for that

level, each element keeps a down pointer to its duplicate on its lower level.

According to the construction of the random skip list, the level ℓ(x) of an element x ∈ S

is a geometric with parameter p = 1/2, and

P r(ℓ(x) = k) = 2−k,P r(ℓ(x) ≥ k) =
∞∑
i=k

2−k = 21−k.

The definition of the number of the leveling r implies that

P r(r ≥ k) = P r(
∪
x∈S
{ℓ(x) ≥ k}) ≤

∑
x∈S

P r(ℓ(x) ≥ k) = n21−k.

Lemma 14.3. The discrete random variable X is non-negative, then E[X] =
∑∞

i=1 P r(X ≥ i).

Proof. According to the definition of expectation

E[X] =
∑∞

i=0 iP r(X = i) =
∑∞

i=1 i[P r(X ≥ i)− P r(X ≥ i+ 1)]

=
∑∞

i=1 iP r(X ≥ i)−
∑∞

i=1 iP r(X ≥ i+ 1)

=
∑∞

i=1 iP r(X ≥ i)−
∑∞

i=2(i − 1)P r(X ≥ i)

=
∑∞

i=1 P r(X ≥ i).

Problem 14.2. If each trial of an experiment succeed w/p at least p. Compute the expected

number of trials to success.

Solution 14.1. Let X be the number of trials to success. Then E[X] =
∑∞

i=0 iP r(X = i) =∑∞
i=1 P r(X ≥ i). All trials are independent, therefore P r(X ≥ i) = P r(all trials until i − 1 failed) ≤

(1− p)i−1. Therefore, E[X] ≤ 1/(1− (1− p)) = 1/p.

34

Theorem 14.3. The number of levels (or height) r in a random leveling of a set S of size n has

its expectation

E[r] = O(logn).

Moreover, r =O(logn) with high probability.

Proof. The number of levels r is non-negative, discrete random variable, then

E[r] =
∑∞

i=0 iP r(r = i) =
∑∞

i=1 P r(r ≥ i)

=
∑c logn

i=1 P r(r ≥ i) +
∑∞

i=c logn+1 P r(r ≥ i)

≤ c logn+
∑∞

i=c logn+1 P r(r ≥ i)

= c logn+
∑∞

i=c logn+1n2
1−i

= c logn+ 2n/2c logn ≤ c logn+ 2.

The last inequality holds when c ≥ 1. The probability of having a skip list with levels

exceeding c logn

P r(r ≥ c logn) ≤ n

2c logn−1
=

2
nc−1

∈ o(1),

when c > 1. That says, r =O(logn) with high probability.

Algorithm 6 Search Skip List
Input: element x, and a leveling of sorted set S with number of levels r

1: v = −∞

2: while v ,∞ and key(v) < x do

3: if key(right(v)) < x then

4: v = right(v)

5: else if key(right(v)) > x then

6: v = down(v)

7: else

8: return v

9: end if

10: end while

35

Lemma 14.4. The expected memory a random skip list for a set of n elements is O(n).

Proof. The memory of a random skip list for a set of n distinct elements is the sum of

the memory each element uses. Let ℓ(x) be the levels of x appears in the skip list, it’s a

geometric r.v. with parameter p = 1/2, and E[ℓ(x)] = 1/p = 2. The memory used by a

skip list for S is X =
∑

x∈S ℓ(x), and E[X] =
∑

x∈S E[ℓ(x)] = 2n ∈O(n).

Lemma 14.5. The expected searching time for any element in a random skip list for n distinct

elements is O(logn).

Proof. To analysis the searching time, we conduct a backward search over the generated

skip list from the bottommost to the leftmost element at the topmost level. The search

algorithm is FlipWalk (see Table 7).

Let Xr be the number of steps required to walk up r levels. We have the relation

E[Xr] = 1+E[Xr |Flipr].

At each level, it requires at least one step before walking up or left. The expected steps

of moving up at level i depend on the flipping outcomes: moving up if the flip is Head,

moving left otherwise. Thus, we have

E[Xr |Flipr] = E[Xr |Flipr =Head]P r(Flipr =Head) +E[Xr |Flipr = Tail]P r(Flipr = Tail)

= (E[Xr |Flipr =Head] +E[Xr |Flipr = Tail])/2= (E[Xr−1] +E[Xr])/2,

and E[Xr] = 2+ E[Xr−1]. It implies that the expected number of steps on each level is

2. The empty leveling is a trivial special case: the expected number of steps to walk up

r = 0 level is also zero, i.e. E[X0] = 0. Therefore E[Xr] = 2r and E[E[Xr]] =O(logn).

36

Algorithm 7 FlipWalk Backward Searching
Input: searching key element v, the leftmost element at the topmost level u

1: while v , u do

2: if Flip = Head then

3: v←walk up(v) ▷ element exists when walk up

4: else

5: v←walk left(v)

6: end if

7: end while

14.3 Hash Table

A hash table is a data structure with a table T consisting of n cells indexed by N =

{0,1, . . . ,n − 1}, and hash function h : M → N , where M = {0,1, . . . ,m − 1} is a totally or-

dered universe. Generally, m ≫ n. Hash table allows O(1) searching operation, works

efficiently.

A perfect hash function maps distinct keys in S ∈ 2M to distinct locations in T . A collision

occurs when two distinct keys x and y has the same hash value, i.e. h(x) = h(y). These

two elements collide at the corresponding location in T .

There is no perfect hash function s.t it maps keys in all possible S ∈ 2M with no collision.

It’s much common to allow a small number of collisions in real applications. To allow

collision, the keys colliding at any given location are usually organized into a secondary

data structure, e.g. linked list accessible from the location. It’s so called chaining, another

approach is open addressing, which does not maintain a secondary data structure but looks

for another locations in the hash table.

There is a randomized hashing scheme to conduct search and update operations in ex-

pected time O(1) without any probabilistic assumption over the operation sequence, but

w.r.t the random choices of the hash function.

37

Definition 14.4 (Strongly k-universal Hash Family). Let M = {0,1, . . . ,m − 1} and N =

{0,1, . . . ,n − 1}, with m ≥ n. A family H of functions from M into N is called strongly k-

universal or k-uniform if, for any set S ∈ 2M with |S | = k and any set T ∈ 2N with |T | = k,

where k ≤min{m,n}, the probability that a random hash function h uniformly drawn from H

maps the ith element in S to the ith element of T is n−k, i.e.

P r(∩ki=1{h(xi) = yi}) = 1/nk,

where {x1,x2, . . . ,xk} are k distinct elements drawn from M, but {y1,y2, . . . ,yk} drawn from N

may contain some same elements.

Definition 14.5 (Universal Hashing Family). LetM = {0,1, . . . ,m−1} and N = {0,1, . . . ,n−

1}, with m ≥ n. A family H of functions from M into N is called 2-universal if, for any two

distinct elements x,y ∈M, and for h chosen uniformly at random from H ,

P r(h(x) = h(y)) ≤ 1/n.

Lemma 14.6. The strongly 2-universal hashing family belongs to the 2-universal hashing fam-

ily.

Proof. Suppose h is a hash function chosen uniformly at random from the strongly 2-

universal hashing family H . Given any two distinct elements x,y ∈M, we have

P r(h(x) = h(y)) =
n−1∑
i=0

P r(h(x) = i,h(y) = i) =
n−1∑
i=0

n−2 = n−1.

Therefore, h is also a hash function from the 2-universal hashing family.

Lemma 14.7. Let h be a hash function chosen uniformly at random from the 2-universal hash-

ing family H , the expected number of search operations is O(1+m/n).

Proof. Given ∀z ∈M, we conduct the lookup operation on the hash table T , let Xi be an

indicator r.v of whether h(xi) = h(z), i = 0,1, . . . ,m−1 and xi ∈M. If h(xi) = h(z), it’s said

that xi and z are hashed to the same bucket. Therefore, the size X of bucket of h(z) is the

38

number of search operations required to lookup z, it can be represented using the sum of

the r.v.s Xi , i.e. X =
∑

xi,z∈MXi and its expectation

E[X] =
∑

xi,z∈M
E[Xi] =

∑
xi,z∈M

P r(h(xi) = h(z)) ≤
∑

xi,z∈M
1/n ≤m/n.

Adding the hashing operation, which is O(1), therefore it takes O(1 + m/n) times to

lookup an element in T .

Definition 14.6 (Load Factor). The ration α =m/n is called load factor of the hash table T .

The choice of the load factor is a tradeoff between the space and time. A higher load factor

implies a higher collision probability and longer time in searching, but a lower memory

space. A lower load factor requires to increase the size of the hash table and rehashing

of the existing elements in old hash table to the new table, but it reduce the collision

chance and thus make sure the constant searching complexity. For example, the initial

load factor of the HashMap in Java is α = 0.75 < 1.

Definition 14.7 (Nearly Universal Hashing Family). Let M = {0,1, . . . ,m − 1} and N =

{0,1, . . . ,n− 1}, with m ≥ n. A family H of functions from M into N is called nearly universal

if, for any two distinct elements x,y ∈M, and for h chosen uniformly at random from H ,

P r(h(x) = h(y)) ≤ 2/n.

The simplest technique for nearly universal hashing is multiplicative hashing1, including

two variants: PrimeMultiplicative Hashing(PMH) and Binary Multiplicative hashing(BMH).

PMH uses modular arithmetic with prime numbers, and BMH uses modular arithmetic

with the powers of 2. Both variants requires a integer r.v named salt a to define a hash

function. The salt is sampled uniformly at random when create the hash table and kept

fixed during the entire lifetime of the table. All consequential analysis on the probability

of the two hashing families are defined w.r.t the salt a.

Given any non-negative integer n, we denote [n] = {0,1, . . . ,n−1}, and [n]+ = {1,2, . . . ,n−1}.
1http://web.engr.illinois.edu/ jeffe/teaching/algorithms/notes/12-hashing.pdf

39

Definition 14.8 (Prime Multiplicative Hashing). Given a prime number p > m = |M |. For

any integer a ∈ [p]+, a hash function multpa : M→N is defined in terms of p

multpa(x) = (ax mod p) mod n,∀x ∈M.

The set of all such hash functions

PMH = {multpa|a ∈ [p]
+}

is called the PMH family.

Property 14.1. ∀x,y ∈M, and a ∈ [p]+, multpa(x)−multpa(y) =multpa(x − y).

Lemma 14.8. ∀x,z ∈ [p]+, there exists a unique integer a ∈ [p]+, s.t ax mod p = z.

Proof. Let x ∈ [p]+. Suppose there are two distinct integers a,b ∈ [p]+, s.t ax mod p =

bx mod p or (a − b)x mod p = 0. Because x ∈ [p]+, it implies that a − b is divisible by p.

Since p is prime and |a − b| < p, which means a = b. Similarly, ∀z ∈ [p]+, there exists a

unique a ∈ [p]+, s.t. ax mod p = z.

Suppose it holds for z = 0, or there exists a unique integer a ∈ [p]+, s.t. ax mod p = 0.

It means ax is divisible by p. Because p is prime, either a or x is divisible by p, which is

impossible.

The function fa : [p]+→ [p]+ defined by fa(x) = ax mod p is injective and bijective.

Lemma 14.9. PMH is universal. It’s sufficient to show ∀x ∈ [p]+, P r(multpa(x) = 0) ≤ 1/n.

Proof. To prove PMH is universal, we have to show ∀x , y ∈ [p]+

P r(multpa(x) =multpa(y)) ≤ 1/n.

The equality multpa(x) = multpa(y) indicates multpa(x − y) = 0. It suffices to show

∀x ∈ [p]+, P r(multpa(x) = 0) ≤ 1/n. The salts a ∈ [p]+ lead to multpa(x) = 0, also present

ax mod p is divisible by n. There are ⌊(p − 1)/n⌋ integers divisible by n. According to the

40

above lemma, ∀z ∈ [p]+, there exists a unique salt a ∈ [p]+ s.t ax mod p = z. Therefore,

there are ⌊(p − 1)/n⌋ salts with z = kn, where 1 ≤ k ≤ ⌊(p − 1)/n⌋. Considering there are

p − 1 integers in [p]+,

P r(multpa(x) = 0) = ⌊(p − 1)/n⌋/(p − 1) ≤ 1/n.

Thus, PMH is universal.

Definition 14.9 (BinaryMultiplicative Hashing). LetM = [2w],N = [2ℓ],W = {x ∈M is odd}.

Given a ∈W , a hash function multba : M→N is defined in terms of the powers of 2

multba(x) = ⌊
ax mod 2w

2w−ℓ
⌋,∀x ∈M.

The set of such hash functions

BMH = {multba|a ∈W }

is called the BMH family.

BMH is to hash w-bit words to ℓ-bit fingerprint. Let’s have a close look at the formula of

the hash function. The product ax is 2w bits long, since both a,x ∈M = [2w]. The modular

arithmetic operation ax mod 2w throws out the higher w bits of ax, and the division by

2w−ℓ is a bitwise right shift operation, i.e. keeps the top w− (w− ℓ) = ℓ bits of ax mod 2w.

Lemma 14.10. ∀x,z ∈W , there exists a unique integer a ∈W s.t ax mod 2w = z.

Proof. Given x ∈W . Assume there are two distinct integers a,b ∈W , s.t

ax mod 2w = bx mod 2w.

It implies that (a − b)x mod 2w = 0, and (a − b)x is divisible by 2w. Because x is odd, so

a − b is divisible by 2w. Also −2w < a − b < 2w, it’s clear a = b. Similarly, ∀z ∈ W , there

exists a unique salt a ∈W , s.t ax mod 2w = z.

The function fa : W →W defined by fa(x) = ax mod 2w is injective and bijective.

41

Lemma 14.11. BMH is nearly universal.

Proof. To prove BMH is nearly universal, we show that ∀x,y ∈W , x , y

P r(multba(x) =multba(y)) ≤ 2/n.

Suppose x > y. multba(x) = multba(y) indicates that the top ℓ bits of ax mod 2w and

ay mod 2w are identity. Let t denote these equal bits, and rx, ry denote the remaining

bits of ax mod 2w and ay mod 2w. Because fa(x) = ax mod 2w is injective, then rx , ry .

If rx > ry , then a(x − y) mod 2w = rx − ry > 0. Because rx − ry ≤ 2w−ℓ, so the top ℓ bits of

a(x − y) mod 2w are all zeros. Similarly, if rx < ry , the top ℓ bits of a(y − x) mod 2w are

all zeros, or the top ℓ bits of a(x − y) mod 2w are all ones. That is, multba(x − y) = 0 or

multba(x − y) = 2ℓ − 1= n− 1.

According to the above analysis, we have

P r(multba(x) =multba(y)) ≤ P r(multba(x − y) = 0) + P r(multba(x − y) = n− 1).

Since x , y, a(x − y) can be decompose into the product of an odd and the power of 2, i.e.

a(x − y) = z2k,

where z is odd, and 0 ≤ k ≤ w − 1. According the previous Lemma, az mod 2w consists of

w − 1 random bits, followed by a 1. Because both a and z are odd, az is odd. However, 2i

are all even, except when i = 0. And a(x − y) mod 2w = z2k mod 2w consists of w − k − 1

random bits, followed by a one, followed by k zeros for left shifting operation.

We note multba(x − y) is the top ℓ bits of a(x − y) mod 2w. To figure out the distribution

of multba(x − y), let’s consider three cases as follows:

1. If k < w − ℓ, then w − k − l > ℓ − 1 ≥ ℓ, multba(x − y) consists of ℓ random bits

P r(multba(x − y) = 0) = P r(multba(x − y) = n− 1) = 1/2ℓ = 1/n.

42

2. If k = w−ℓ, then w−k−1= ℓ−1, multba(x−y) consists of ℓ−1 random bits, followed

by a one

P r(multba(x − y) = 0) = 0,P r(multba(x − y) = n− 1) = 1/2ℓ−1 = 2/n.

3. If k > w− ℓ, then w− k −1 < ℓ−1, multba(x−y) consists of one or more random bits,

followed by a one, followed by one or more zeros

P r(multba(x − y) = 0) = P r(multba(x − y) = n− 1) = 0.

Above all, ∀x , y ∈ [2w],a ∈W

P r(multba(x) =multba(y)) ≤ 2/n.

That is, BMH is near-universal.

Problem 14.3. Let h : M → N be a uniformly sampled hash function at random from all

possible hashing functions, where |M | = m, and |N | = n. Assuming m ≤ n, and show the

probability that the randomly picked hashing function is a perfect hashing function. Put it

in another words, considering there arem balls and n bins, the perfect hashing function assigns

each bin at most one balls.

Solution 14.2. The size of the hashing functions equals to the total number of the assignments.

Each ball has n possible assignments, and the balls are assigned independently, the correspond-

ing number is nm. The number of perfect hashing functions can be computed from the number

of permutations of m balls in n bins, it’s Am
n = n(n − 1)(n − 2) · · · (n −m+ 1). Above all, we

uniformly sample a hashing function at random from the collection with probability

p =
Am
n

nm
=

n(n− 1)(n− 2) · · · (n−m+ 1)
nm

=
m−1∏
i=1

(
1− i

n

)
.

Problem 14.4. LetH be a 2-universal family of hash functions from X to Y , where |Y |= cM2,

and suppose we use h, a hash function randomly drawn fromH to hashM unique items. Show

that the probability of a collision occurring is less than 1/(2c).

43

Proof. The hash function h ∈ H is 2-universal. Given any two distinct items x,y ∈ X

P r(h(x) = h(y)) ≤ 1/|Y |= 1/cM2.

Therefore, the probability of a collision occurring

P r(
∪
x,y
{h(x) = h(y)}) ≤

∑
x,y

P r(h(x) = h(y)) =
M(M − 1)

2
1

cM2 ≤
1
2c

.

Searching in a chained hash table requires O(1) expected time, but the worst search time

may be very high. Assuming that we are using ideal random hashing functions. To compute

the worst search time, we show the lemma on maximum load as follows.

Lemma 14.12. If n balls are independently and uniformly at random assigned to one of n bins,

the fullest bin contains O(logn/ loglogn) balls with high probability.

Proof. Let Xi be the number of balls assigned to the ith bin, ∀i = 1,2, . . . ,n, then Xi ∼

B(n,1/n). Therefore, E[Xi] = 1, and the probability that the fullest bin contains at least

kα = c logn/ loglogn balls with probability

P r(max
i

Xi ≥ kα) = P r(
∪
i

{Xi ≥ k}) ≤
∑
i

P r(Xi ≥ kα) = nP r(Xi ≥ kα).

Let p = 1/n, q = 1− 1/n, then P r(Xi = k) = (nk)p
kqn−k, and

(n
k+1)p

k+1qn−k−1

(nk)p
kqn−k

=
(n− k)p
(k+ 1)q

=
n− k

(n− 1)(k+ 1)
≤ n− kα
(n− 1)(kα + 1)

.

Denote λ= n−kα
(n−1)(kα+1) , then λ < 1. Rearranging the tail of the binomial coefficients gives

P r(Xi ≥ kα) =
∑
k≥kα

(
n
k

)
pkqn−k =

(
n
kα

)
pkαqn−kα

∑
i≥0

λi <

(
n
kα

)
pkαqn−kα

1
1−λ

.

Assume kα ≥ 1, then λ ≤ 1/(kα + 1) and 1/(1−λ) ≤ 1+ 1/kα ≤ 2.

44

Applying the inequalities(
n
kα

)
≤

(
en
kα

)kα
, (1− 1

n
)n−kα = (1− 1

n
)n(1− 1

n
)−kα < 1/e.

plugging them into the RHS of the inequality of the probability gives

n

(
n
kα

)
pkαqn−kα

1
1−λ

< n
2
e

(
e
kα

)kα
< n

(
e
kα

)kα
.

Let c = 3, we rearrange the RHS

n

(
e
kα

)kα
≤ n

(
loglogn
logn

)3logn/ loglogn

= elogn+3logn(logloglogn−loglogn)/ loglogn

= e−2logne(3logn) logloglogn/ loglogn < 1/n.

Therefore P r(maxiXi ≤ 3logn/ loglogn) > 1− 1/n→ 1 as n→∞.

The idea of open addressing is to trade table size for pointers. All elements are directly

stored in the hash table. To perform an insertion, the hash table is probed for an empty

slot in some systematic way. Instead of using a fixed order, the sequence of positions

probed depends on the key to be inserted.

The hash function is redefined as

h : U × {0,1, . . . ,m− 1} → {0,1, . . . ,m− 1}

For ∀x ∈ U , the probe sequence ⟨h(x,0),h(x,1), . . . ,h(x,m − 1)⟩ should be a permutation

over ⟨0,1, . . . ,m − 1⟩. If no empty position is found in the sequence the hash table over-

flows.

The main problem with open addressing is the deletion of elements, which may affect the

probe sequence for other elements in the table.

45

Algorithm 8 Open Hashing Insert
Input: Hash table T ← ∅, hash function h, i← 0

1: function HashInsert(T ,x)

2: while i < m do

3: j← h(x, i)

4: if T [j] = NIL then

5: T [j]← x

6: Return j ▷ insert entry x in hash table T

7: else

8: i← i+ 1

9: end if

10: end while

11: end function

Theorem 14.4. Given an open-address hash table with load factor α = n/m < 1.

• The expected number of probes in an unsuccessful search is at most 1
1−α , assuming

uniform hashing2.

• The expected number of probes in a successful search is at most 1
α ln

1
1−α , assuming

uniform hashing and each key in the table is equally likely to be searched for.

Proof. Let random variable X be the number of probes in an unsuccessful search. Let Ai

denote that there is an ith probe to an occupied slot. An unsuccessful searchmeans that

every probe except the last one is to an occupied slot. Therefore, we have

P r(X ≥ i) = P r(A1 ∩A2 ∩ · · · ∩Ai−1)

= P r(A1)P r(A2|A1)P r(A3|A1 ∩A2) · · ·P r(Ai−1|A1 ∩A2 ∩ · · · ∩Ai−2)

= n
m

n−1
m−1

n−2
m−2 · · ·

n−i+2
m−i+2 ≤ (

n
m)

i−1 = αi−1.

2Uniform hashing assumes that each key is equally likely to have any of the m! permutations over

⟨0,1, . . . ,m−1⟩ as its probe sequence. It’s different from simple uniform hashing assumption that each key

is equally likely to be hashed into any of the m slots.

46

The expected number of probes in an unsuccessful search

E[X] =
m∑
i=0

iP r(X = i) =
m∑
i=1

P r(X ≥ i) ≤
m∑
i=1

αi−1 ≤ 1
1−α

.

If α is constant, searching an open-address hash table requires O(1) time. Inserting an

entry into an open-address hash table takes at most 1/(1−α) on average.

A successful search follows the same probe sequence as when a key element is inserted in

the open-address hash table. Let Z be the number of probes in a successful search, Xi be

the number of probes to perform the ith insertion. When inserting the ith element, the

load factor is αi = (i − 1)/m and the expected number of probes to insert the ith key

E[Xi] ≤
1

1−αi
=

m
m− i+ 1

,∀1 ≤ i ≤ n.

Therefore, the number of probes in a successful search

E[Z] =
∑n

i=1E[Xi]P r(i) ≤ α−1
∑n

i=1
1

m−i+1

= α−1
∑m

k=m−n+1
1
k ≤ α−1

∫ m

m−n
1
xdx

= α−1 ln m
m−n = 1

α ln
1

1−α .

14.4 Bloom Filter

A Bloom filter consists of an array of m bits, A[0] to A[m − 1], initially all set to 0. A

Bloom filter uses k independent random hash functions h1, . . . ,hk with range {0,1, . . . ,m−

1}. Assuming each hash function maps an element in the universe to a random number

uniformly over the range {0,1, . . . ,m− 1}.

Suppose we use a Bloom filter to present a set S = {s1,s2, . . . ,sn} of n elements from a large

universe U . For any element s ∈ S, the bits A[hi(s)] are set to 1, ∀1 ≤ i ≤ k. A bit location

can be set to 1 multiple times, but only the first change has an effect. To check whether

an element x is in S, we check if all bit locations A[hi(x)] for 1 ≤ i ≤ k are set to 1. If not, x

47

must not be in S. If they are all set to 1, we may assert that x ∈ S. However, the assertion

is not completely certain, it’s possible that the existing hashed values successfully cover

these bit locations for x. It’s called false positive error. Our goal is to choose the best k to

minimize the false positive probability.

We analyze the chance that a specific bit location being set to 1 after all elements of S

have been hashed into the Bloom filter. Denote the event as ϵi , ∀0 ≤ i ≤ m − 1. Because

each hash function maps an element uniformly to the range, and there are kn random

hash values during the insertion. The probability that none of them set A[i] to 1 is

P r(ϵ̄i) =

(
1− 1

m

)kn
≈ e−kn/m.

Given an element x, the events ϵ1, . . . ,ϵk related to x are mutually independent. The false

positive probability p is the probability that all bit locations A[hi(x)] are set to 1:

p = P r(ϵ1 ∩ . . .∩ ϵk) =
k∏

i=1

(1− P r(ϵ̄i) = (1− P r(ϵ̄i))k ≈ (1− e−kn/m)k.

When k = (ln2)(m/n), the derivative of p w.r.t k is zero, and that this point is a global

minimum p = 2−k ≈ (0.6185)m/n. The probability falls exponentially inm/n, the number

of bits used per item.

15 Fingerprinting

15.1 Polynomial Identity Testing

Lemma 15.1. Given two r.v.s X1 and X2, show that P r(X1) < P r(X1|X̄2) + P r(X2).

Proof. According to the law of total probability, we get

P r(X1) = P r(X1|X2)P r(X2) + P r(X1|X̄2)P r(X̄2) < P r(X2) + P r(X1|X̄2).

48

15.2 Determinant of Matrices

15.3 Perfect Matching

16 Markov Chains

A discrete time Markov chainM is a sequence of r.v.s X1,X2, . . .with the Markov property

(aka memorylessness property), namely future behavior ofM depends only on its present

state, and not on its previous states

P r(Xt |Xt−1, . . . ,X2,X1) = P r(Xt |Xt−1)

if the conditional probability is well-defined. The possible values of Xt form a countable

set S is the state space of the MC. If it satisfies P r(Xt |Xt−1) = P r(Xt−1|Xt−2),∀t ≥ 2, M

is a time-homogeneous MC. If the size of S is also finite,M is a finite time homogeneous

MC, which can be represented with a directed graph G = (V ,E) and a transition matrix

P . The entry Pij = P r(X1 = j |X0 = i),∀i, j ∈ S. Each vertex of the graph is a state in S,

there is an edge directed from i to j if Pij > 0.

MCs have many applications:

• HMMs, show up in NLP, ML and signal processing.

• Bayesian ML and statistics to approximately sample from intractable distribution.

• Approximately count (e.g. perfect matchings in a graph) and approximate the vol-

ume of complicated (convex) sets.

• Analyze the performance of randomized algorithms

• Differential privacy3 argminθ∈Ω f (θ;D)
3Differential privacy is a research topic in the areas of statistics and data analytics that uses hashing,

subsampling and noise injection to enable crowdsourced learning while keeping the data of individual

users completely private.

49

16.1 Convergence of MCs

The Markov chains are designed to sample some probability distributions which are hard

to sample directly. To investigate the convergence of a MC, we define the stationary dis-

tribution, which the MCs are expected to converge.

Definition 16.1 (Stationary Distribution). The transition matrix P is row stochastic P 1 = 1.

There must be a left eigenvector π of P corresponding to the eigenvalue 1, s.t. πP = π, where

πi ≥ 0 and 1Tπ = 1. If π is unique, it’s the stationary distribution of M. Therefore, M is

stationary and it converges to π, i.e lim
t→∞

π0P
t = π given any initial distribution π0.

It implies that if we start the MC with state sampled from π, the chain thereafter consists

of states sampled from π. IfM contains multiple stationary distributions, it’s reducible.

IfM is irreducible (a.k.a ergodic) iff for every i, j there exists a t, s.t P t
ij > 0, the the station-

ary distribution is unique.

Even when the stationary distribution is unique, you may not have

π = lim
t→∞

π0P
t

for every initial distribution π0.

IfM is aperiodic

gcd({n : P n
ii > 0}) = 1

for all i ∈ S, and irreducible, then the stationary distribution π is unique, and M con-

verges to it from any initial distribution π0.

Problem 16.1. Recall an absorbing state i is a state s.t. P r(Xt+1 = i|Xt = i) = 1. (1) What

does row i of P look like if i is absorbing? (2) Can MC be ergodic if it has an absorbing state?

Solution 16.1. (1) If state i is absorbing, then Pii = 1 and Pij = 0, ∀j , i. (2) Suppose there is

an absorbing state, say state i. Also, assuming that MC starts at state i, it’s trapped and unable

to reach other states anymore. Therefore, the MC is not ergodic.

50

When the size of the state space is large or the transition matrix is dense, it’s hard to

compute the stationary probability distribution π. There is an alternative approach to

verify thatM is stationary: a reversible MC is stationary.

Definition 16.2 (Reversibility). A MCM with transition matrix P is reversible if there’s a π

s.t πiPij = πjPji ,∀i, j ∈ S. The equations are known as detailed balance equations.

Lemma 16.1. IfM is a reversibleMarkov chain with transition matrix P , andπiPij = πjPji ,∀i, j ∈

S, then π is the steady state or stationary distribution ofM.

Proof. Summing up the two sides w.r.t i, i.e
∑

i πiPij =
∑

iπjPji = πj , since P is row

stochastic. Therefore, π′P = π, which implies that π’s the stationary distribution.

A typical reversible MC is the random walk on a graph G = (V ,E), where a step starting

from a vertex u to one of its du neighbors, and each of which is chosen w/p 1/du . It has

the stationary distribution

πu =
du∑
u du

=
du
2|E|

satisfying

πuPuv =
du
2|E|

1
du

= πvPvu =
dv
2|E|

1
dv

=
1

2|E|
.

Problem 16.2. Given a MC and two states x and y. The hitting time of x starting from y

is defined as τy→x = min{t|Xt = x,X0 = y}. Consider a MC on Zn = {0,1, . . . ,m − 1} which

swings back and forth with probability 1/2, and fk = E[τk→0], show the relationship between

fk−1, fk and fk+1.

Solution 16.2. Applying the law of total probability,

E[τk→0] = E[τk→0|X1 = k−1]P r(X1 = k−1|X0 = k)+E[τk→0|X1 = k+1]P r(X1 = k+1|X0 = k).

Let’s have a close look at E[τk→0|X1 = k − 1] and E[τk→0|X1 = k + 1]. The former equals

1+ E[τk−1→0] and the later one is equal to 1+ E[τk+1→0]. Also,P r(X1 = k − 1|X0 = k) =

P r(X1 = k+ 1|X0 = k) = 1/2. Therefore, fk = 1+ (fk−1+ fk+1)/2.

51

Definition 16.3 (Total Variation Distance). Let X and Y be the r.v.s defined on the same

probability space. The total variation distance between X and Y is defined as

dT V (X,Y) = sup
A

[P r(X ∈ A)− P r(Y ∈ A)],

where the supremum is taken over all subsets A, where P r(X ∈ A) and P r(Y ∈ A) are defined.

Problem 16.3. Prove that dT V (X,Y) = supA |P r(X ∈ A)− P r(Y ∈ A)| ≥ 0.

Proof. Assuming that S achieves supA |P r(X ∈ A) − P r(Y ∈ A)|. If P r(X ∈ S) − P r(Y ∈

S) ≥ 0, it achieves dT V (X,Y), thus dT V (X,Y) = supA |P r(X ∈ A) − P r(Y ∈ A)|. If P r(X ∈

A)− P r(Y ∈ A) < 0, then

|P r(X ∈ S)− P r(Y ∈ S)| = P r(Y ∈ S)− P r(X ∈ S) = P r(X ∈ S̄)− P r(Y ∈ S̄)

= supA |P r(X ∈ A)− P r(Y ∈ A)| ≥ supA[P r(X ∈ A)− P r(Y ∈ A)].

The second equation implies that S̄ achieves supA[P r(X ∈ A)− P r(Y ∈ A)], therefore

P r(X ∈ S̄)− P r(Y ∈ S̄) = sup
A

[P r(X ∈ A)− P r(Y ∈ A)] = sup
A
|P r(X ∈ A)− P r(Y ∈ A)|.

Total variation distance is a property of distribution, it does not depend on the r.v.s X and

Y . Given two probability distributions P and Q, the total variation distance between P

and Q is defined in terms of the ℓ1 distance between two vectors:

dT V (P ,Q) =max
A

∑
i∈A

(pi − qi) =max
A
|
∑
i∈A

(pi − qi)|.

Lemma 16.2. Let P and Q be two probability distributions, their total variation distance

dT V (P ,Q) = ∥P −Q∥1/2.

Proof. It’s clear that dT V (P ,Q) = dT V (Q,P). Let S = {i|pi > qi}. Then

dT V (P ,Q) =maxA
∑

i∈A(pi − qi) =
∑

i∈S(pi − qi),

dT V (Q,P) =maxA
∑

i∈A(qi − pi) =
∑

i∈S̄(qi − pi).

52

Therefore

∥P −Q∥1 =
∑
∀i
|pi − qi |=

∑
i∈S

(pi − qi) +
∑
i∈S̄

(qi − pi) = 2dT V (P ,Q)

and dT V (P ,Q) = ∥P −Q∥1/2.

16.2 Coupling

Lemma 16.3 (Coupling Lemma). Let P andQ be two distributions on some specific r.v Z. Let

EP (Z) and EQ(Z) be the expectations of Z w.r.t P and Q. Suppose that |Z | ≤M. Then

|EP (Z)−EQ(Z)| ≤ 2MdT V (P ,Q).

Proof. Computing according to the definition of expectations

|EP (Z)−EQ(Z)| = |
∑

z z(P (Z = z)−Q(Z = z))| ≤
∑

z |z||P (Z = z)−Q(Z = z)|

≤M
∑

z |P (Z = z)−Q(Z = z)|=M∥P −Q∥1 = 2MdT V (P ,Q).

To measure the well behavior of M, i.e. the convergence rate of M to the stationary

distribution π, we introduce the the mixing time in terms of the total variation distance

and the coupling method.

Definition 16.4 (Mixing Time). ∀ϵ > 0, ∃tmin(ϵ) s.t dT V (π0P
t,π) ≤ ϵ, ∀π0 and t ≥ tmin(ϵ).

The time tmin(ϵ) is the mixing time, defined as

tmin(ϵ) =min
t

{
dT V (π0P

s,π) ≤ ϵ,∀t ≥ s
}
.

Definition 16.5 (Coupling). Given two distributions P and Q on the same state space Ω, a

coupling Z of P and Q is a joint distribution on Ω×Ω s.t the first marginal distribution of Z

is P and the second marginal distribution of Z is Q.

Lemma 16.4 (Coupling Lemma). For any discrete r.v.s X and Y , dT V (X,Y) ≤ P r(X , Y).

53

Proof. Let A be any set that both X and Y has their definitions on A.

P r(X ∈ A) = P r(X ∈ A∩Y ∈ A) + P r(X ∈ A∩Y ∈ Ā),

P r(Y ∈ A) = P r(Y ∈ A∩X ∈ A) + P r(Y ∈ A∩X ∈ Ā).

It implies that P r(X ∈ A)−P r(Y ∈ A) = P r(X ∈ A∩Y ∈ Ā)−P r(Y ∈ A∩X ∈ Ā). Therefore,

|P r(X ∈ A)− P r(Y ∈ A)| ≤ P r(X ∈ A∩Y ∈ Ā) + P r(Y ∈ A∩X ∈ Ā) = P r(X , Y),∀A.

Therefore, dT V (X,Y) = supA|P r(X ∈ A)− P r(Y ∈ A)| ≤ P r(X , Y).

To prove the convergence for an ergodic MC with transition matrix P and stationary dis-

tribution π starting in an initial distribution π0, we will construct a series of couplings

Zt between the distribution π0P
t and π, s.t if (Xt,Yt) ∼ Zt then

1. {Xt} is a MC with transition matrix P and an initial distribution π0

2. {Yt} is a MC with transition matrix P and an initial distribution π

3. If Xτ = Yτ ,∀τ > 0, the two chains {Xt} and {Yt} coalesce, i.e Xt = Yt,∀t ≥ τ .

According to the coupling lemma, dT V (π0P
t,πP t) = dT V (π0P

t,π) ≤ Zt(Xt , Yt). Let’s

investigate the probability Zt(Xt , Yt),∀t ≥ τ .

Lemma 16.5. The probability Zt(Xt , Yt) is non-increasing.

There are two famous application of the coupling lemma: Shuffling Cards and Random

Walks on the Hypercube. Also, both problems are closely related to the Coupon Collector

Problem.

Problem 16.4 (Shuffling Cards). Card-shuffling problem refers to compute the number of

times to reshuffle a deck of cards such that it becomes sufficiently randomized. The problem

can be described as a Markov Chain with finite states. Given two copies Xt and Yt of the card-

shuffling MC with different states. To construct a coupling, we choose a position i uniformly

54

at random from [n], and then obtain Xt+1 from Xt by moving the i-th card C of Xt to the top.

To obtain Yt+1 from Yt, a card of Yt with the same value as that of C is moved to the top. The

coupling is a valid coupling, because in both chains the probability a specific card is moved to

the top at each step is 1/n. The stationary distributions the chains are all uniform.

We note that once a card is touched, it’s always in the same position in both chains in the

consequential steps. Hence, the two chains are coupled when every card is touched at least

once. We can analyze the minimum number of steps until the two chains are coupled. Let Ai be

the event that card i has not been touched once after r steps. The probability is easy to computed

P r(Ai) =

(
1− 1

n

)r
≤ e−r/n.

The probability that A: any one of the n cards has not been touched can be bounded above using

the union bound inequality and

P r(A) = P r(A1 ∪A2 ∪ · · · ∪An) ≤ ne−r/n.

Let P r(A) ≤ ϵ, we get r ≥ n ln(n/ϵ), i.e. after n ln(n/ϵ) steps, the probability that the chains

are not bounded is at most ϵ. According to the coupling lemma, the variation distance between

the uniform distribution and the distribution of the chain after n ln(n/ϵ) steps is bounded

above by ϵ. Hence, the mixing time tmin(ϵ) ≤ n ln(n/ϵ).

16.3 Monte Carlo Markov Chain

Monte Carlo Markov Chain (MCMC) provides a general approach to sampling from a

desired probability distribution. The basic idea is to construct an ergodic MC whose set

of states is the sample space and whose stationary distribution is the required sampling

distribution. Let X0,X1, . . . ,Xn be a run of the chain. The MC converges to the stationary

distribution from any starting state X0 so, after sufficient steps r, the distribution of the

stateXr will be close to the stationary distribution, so it can be used as a sample. Similarly,

repeating this argument with Xr as the starting state, we use X2r as a sample, and so on.

55

Therefore, we use the sequence of states Xr ,X2r ,X3r , . . . as independent samples from the

stationary distribution of the MC.

The efficiency of the approach depends on (a) how large r must be to ensure a good

sample; (b) how much computation is required for each step of the MC. Coupling is used

to determine the relation between the value of r and the quality of the sampling.

The required sampling distribution may be uniform distribution, we can modify a ran-

dom walk over the state space by giving each vertex an appropriate self-loop probability,

then the stationary distribution will be uniform. Even the sampling distribution is not

uniform, we can generalize the idea to form a non-uniform stationary distribution.

Lemma 16.6. For a finite state space Ω, and for each x ∈Ω, there is a neighborhood structure

N (x) = {y , x : y is reachable from x}. Let N =maxx∈Ω |N (x)|, and let M be any number s.t.

M ≥N . Consider a MCM where

px,y =


1
M , x , y,y ∈N (x),

0, x , y,y <N (x),

1− |N (x)|
M , x = y.

If the chain is irreducible and aperiodic, then the stationary distribution is uniform.

Proof. For any x , y, if πx = πy , then πxpx,y = πypy,x since px,y = py,x. Therefore, the

uniform distribution πx = 1/|Ω| is the stationary distribution.

TheMetropolis Algorithm is an approach to generalize the construction that transforms

any irreducible MC on Ω with a known stationary distribution π to a reversible MC on the

same state space with a different stationary distribution µ, where µx = f (x)/
∑

y∈Ω f (y)

is proportional to some function f ≥ 0 on Ω that we can easily compute.

Lemma 16.7. For a finite state space Ω, and for each x ∈Ω, there is a neighborhood structure

N (x) = {y , x : y is reachable from x}. Let N = maxx∈Ω |N (x)|, and let M be any number

s.t. M ≥ N . For all x ∈ Ω, let πx > 0 be the desired probability of state x in the stationary

56

distribution. Consider a MCM where

px,y =


1
M min{1, πy

πx
}, x , y,y ∈N (x),

0, x , y,y <N (x),

1−
∑

y∈N (x)px,y , x = y.

If the chain is irreducible and aperiodic, then the stationary distribution is given by π.

Proof. For any x , y, if πx ≥ πy , then px,y = 1/M and py,x = (πy/πx)/M, and πxpx,y =

πypy,x. According to the symmetry, we have πxpx,y = πypy,x as πx < πy . Therefore, the

stationary distribution is given by π.

Theorem 16.1. LetMp be a reversible MC on Ω with stationary distribution π. Let f ≥ 0 be

a function defined on Ω. A MCMq with transition probability

qx,y =

 px,ymin{1, πxf (y)
πyf (x)

}, x , y,

1− px,ymin{1, πxf (y)
πyf (x)

}, x = y,

is irreducible and its stationary distribution is µ, in which µx = f (x)/
∑

y∈Ω f (y),∀x ∈Ω.

Proof. The MC Mp with transition probability P and stationary distribution π is re-

versible. For any x , y ∈ Ω, we have πxpx,y = πypy,x and also µy/µx = f (y)/f (x). Now

we show the MCMq is reversible with stationary distribution µ. It’s required to verify

that µxqx,y = µyqx,y , ∀x , y ∈Ω.

Assuming πxf (y)/(πyf (x)) = πxµy/(πyµx) ≥ 1, we get

qx,y = px,y , qy,x = py,x
πyµx
πxµy

.

Applying the known fact about the reversibility ofMp, we have

µxqx,y = µxpx,y = µxπypy,x/πx = πxµyqy,x/πx = µyqy,x.

Therefore,Mq is irreducible and has its stationary distribution µ.

57

Here is a good example to explain how the algorithm works. Let S =
∑∞

i=1 i
−2 = π2/6.

We can design a irreducible MC on the positive integers with the Metropolis approach,

s.t in the stationary distribution πi = 1/(Si2). The neighborhood structures should be

N (i) = {i − 1, i+ 1},∀i > 1 and N (1) = {2}.

16.3.1 Gibbs Sampling

Important algorithmic application of reversibility is Gibbs sampling.

16.4 Differential Privacy

Consider case that we want to compute

argmin
θ∈Ω

f (θ;D).

One way to achieve DP is to sample from a probability distribution proportional to the

value of f , peaked around

P γ(θ ∈ A) ∝
∫
A
e−γf (θ;D)dθ

where A ⊂ S. It’s clear that γ trades off between DP and accuracy.

Eigen Decomposition & Gibbs Sampling: given a symmetric matrix A ∈ Rn×n, DP com-

pute a k-basis for the column span of A

A ≈UΣV T ,

where UTU = I and U = argminV T V=I −tr(V TAV) to use the exponential mechanism

we need to sample from the PDF P r(V) = F1(0.5k,0.5n,A)−1eγtr(V
TAV).

16.5 Streaming Algorithms

Streaming algorithms processing items in terms of a massively long consequence of in-

put stream x = (x1,x2, . . . ,xm), where xi ∈ [n], and approximately estimates an associated

58

function ϕ(x) over the stream x. The streaming algorithms expect to finish the estima-

tion using small amount of space s, e.g. s = o(min(m,n)). The most common estimations

include the frequency of the items in x, and the top k most frequent items.

16.5.1 Finding Frequent Items

Each stream of length m implicitly contains a frequency vector f (x) = (f1, . . . ,fn), where

fi ≥ 0,∀i ∈ [n],
∑

i fi =m. A stream algorithmA gives the output A(x) of the input stream

x. When it comes to the frequency problem with parameter k

A(x) = {j : fj > k/m}.

To resolve the frequency problem, it requires to estimate the frequencies of items. The

classical approach to estimate the frequency in one-pass is the Misra-Gries Algorithm. It

maintains an associated array A, whose keys are the items seen in the stream, and whose

values are the counters associated with the keys.

59

Algorithm 9 Misra-Gries Algorithm
Input: A= ∅

1: for i = 1,2, . . . ,m do

2: Process item j = xi

3: if j ∈ keys(A) then

4: A[j] = A[j] + 1

5: else if |keys(A)| < k − 1 then

6: A[j] = 1

7: else

8: for each ℓ ∈ keys(A) do

9: A[ℓ] = A[ℓ]− 1 ▷ All counters in A are reduced by 1

10: if A[ℓ] = 0 then

11: Remove ℓ from A

12: end if

13: end for

14: end if

15: end for

Each key requires at most ⌈logn⌉ and each value requires at most ⌈logm⌉ bits.The algo-

rithmmaintains at most k−1 keys in A at any time, and A is stored with a balanced binary

search tree. Therefore, with at most k−1 pairs of keys and values, the total space required

is at most O(k(logm+ logn)) = O(k log(mn)).

Theorem 16.2. The Misra-Gries algorithm with parameter k uses one pass and O(k log(mn))

bits of space, and provides, for any token j, an estimate f̂j satisfying fj −m/k ≤ f̂j ≤ fj .

16.5.2 Estimating the Number of Distinct Items

Let d = |{j : fj > 0}| be the number of distinct items in the input stream x. The distinct ele-

ments problem is to output an (ϵ,δ)-approximation to d. The AMS algorithmwas designed

60

for this problem.

For an integer x > 0, let zeros(x) denote the number of zeros that the binary expression of

x ends with. Formally, zeros(x) =max{i : 2i divides x}.

Algorithm 10 AMS Algorithm
Input: a random hash function h : [n]→ [n] from a 2-universal family, z← 0

1: for each xj ∈ x do

2: Process(xj)

3: end for

4: function Process(j)

5: if zeros(h(j)) > z then

6: z← zeros(h(j))

7: end if

8: end function

Output: d̂← 2z+1/2

The algorithm expects that one of the d distinct items in x to hit zeros(h(j)) ≥ logd, s.t

d̂ = 2z+1/2 > d, and the maximum value of zeros(h(j)) over x – maintained in z of the

algorithm – should be a good approximation to logd. Let’s analyze the quality of the

estimation using the AMS algorithm.

For each j ∈ [n] and each integer r ≥ 0, let Xr,j be an indicator r.v for zeros(h(j)) ≥ r. Let

Yr =
∑

j :fj>0Xr,j , and t denote the value of z when AMS terminates. It’s true that

Yr > 0 iff t ≥ r,

Yr = 0 iff t ≤ r − 1.

Because h(j) ∈ [n] is uniformly distributed over a random bit string of length logn. We

have P r(h(j) ≥ r) = 2logn−r/2logn = 2−r ,∀j ∈ [n]. Since h is 2-universal, Xr,j are pairwise

61

independent. Let’s analyze the expectation and variance of Yr :

E[Yr] =
∑

j :fj>0E[Xr,j] = dP r(h(j) ≥ r) = d2−r ,

Var[Yr] =
∑

j :fj>0Var[Xr,j] ≤ dE[X2
r,j] = dE[Xr,j] = d2−r .

Applying Markov’s and Chebyshev’s inequalities respectively, we get

P r(Yr > 0) = P r(Yr ≥ 1) ≤E[Yr] = d2−r ,

P r(Yr = 0) ≤ P r(|Yr −E[Yr]| ≥E[Yr]) ≤
Var(Yr)
(E[Yr])2

= 2r/d.

Let a=min{k : 2k+1/2 ≥ 3d}, b =max{k : 2k+1/2 ≤ d/3}, then we have

P r(d̂ ≥ 3d) = P r(2t+1/2 ≥ 2a+1/2) = P r(t ≥ a) = P r(Ya > 0) = d2−a ≤
√
2/3,

P r(d̂ ≤ d/3) = P r(2t+1/2 ≤ 2b+1/2) = P r(t ≤ b) = P r(Yb+1 = 0) = 2b+1/d ≤
√
2/3.

The estimation is not a good approximation, because P r(d/3 < d̂ < 3d) ≥ 1−2
√
2/3 ≈ 6%.

To improve the estimation, a standard median trick is used.

16.6 Overdetermined Linear System

To solve an overdetermined consistent linear systemAx = b, whereA ∈Rm×n and rank(A) =

n, both m and n are very large and m≫ n, researchers proposed a randomized version of

the Kaczmarz algorithm. The consistency indicates that it has a solution and the solution

is unique.

The algorithm converges faster than the Conjugate algorithms, and does not require to

access to all rows of the matrix A at each iteration.

Before move to the randomized Kaczmarz algorithm, we have a brief view of Kaczmarz

algorithm. At each step, a row vector of A is selected, and the solution then moves along

the selected direction.

62

Algorithm 11 Kaczmarz Algorithm

Input: initial guess x0 for Ax = b, termination threshold ϵ, epoch k = 0

1: while ∥xk+1 − xk∥2 > ϵ do

2: Compute index i = k mod (m+ 1)

3: Update xk+1 = xk +
bi−aTi xk
∥ai∥22

ai ▷ ai : the ith row of A

4: Increase k by 1

5: end while

The solution is updated iteratively, such that ∥xk − x∗∥2 < ∥xk−1 − x∗∥2 and E∥xk − x∗∥22 <

E∥xk−1−x∗∥22. The convergence rate of the problem is determined by the condition number

of A, i.e. κ(A) = σ1(A)/σn(A), where σ1(A),σn(A) is the maximum and the minimum

singular value of A, respectively. Since σ1(A) ≥ σn(A), therefore, κ(A) ≥ 1.

Theorem 16.3. Let x∗ be the true solution. After T iterations of the Kaczmarz algorithm

E∥xT − x∗∥22 ≤ (1−
σ2
n (A)

m∥A∥22→∞
)T ∥x0 − x∗∥22,

if uniformly random sample the rows according to the probability

pi =
∥ai∥22∑
i ∥ai∥22

=
∥ai∥22
∥A∥2F

.

Proof. The idea is to show the iteration decreases the approximation error by a factor of

at least 1− σ2
n (A)

m∥A∥22→∞
in expectation, i.e

E(∥xk+1 − x∗∥22|xk) ≤ (1−
σ2
n (A)

m∥A∥22→∞
)E∥xk − x∗∥22,

63

