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All important signals, including the current and visited states, the depth, the size of alternatives never been

a winner, the number of winners, the percentage of winners and non-winners in the state, the predicted

probability based on other features, are included in a new model that learned from the experience (episodes

from root to leaf node). By learning such kind of model, we can get rid of the cache checking and pruning

component, we choose the path according to the prediction results from this enhanced function to reduce

the number of nodes to extend.

The visualization of the visited path helps to guide us to design a better heuristic algorithm. Based upon

some observation, we can improve the definition of our current priority function.

We model the multi-round STV elimination approach as a reinforcement learning problem, where the

states are the node (or subset of the alternatives), the action set comes from the eliminations (legal one

should follows the rule that one alternative that receives the lowest plurality score will be eliminated), and

the reward should be modeled based on the minimum number of nodes to extend along the current branch,

and possible early discovery of as many winners as possible, and running time and so on. If a path contains

a lot of successful cache checking, it should be punished; if the path contains multiple new winners, it

should be assigned more rewards. Even the path is critical, we say that it contains a single winner, and the

winner is hard to search, because from all other paths we get different winners from this winner.

When the winner set is empty, there is no need to compute the priorities for states. With a nonempty

winner set, we could check whether the predicted winner(s) has/have been elected, if not, its priority will

be higher than those have been elected. Once the start state has been fixed, then searching the path with

its children states the high priority until a winner is found, or the predicted winner(s) is/are different from

the prediction of its parent state.

Visited state should also been fully exploited, such that those nodes with such same states, we should

record their corresponding winner(s) when it’s available. In order to apply Reinforcement Learning (RL)

or Inverse Reinforcement Learning (IRL) techniques to STV, the meanings of states, actions and rewards
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should be clarified.

1 State Space

A state should include the preference profile, a set of candidates, the visited set of candidates, the known

winners. Another way to view the problem: all nodes in the fringe should be considered as the components

of the state. It looks like in Go where there are valid actions (further extension) from many positions

(nodes).

2 Action Space

There are three ways to define the action space: (1) selection of the remaining candidates: the remaining

candidates could indicate a state, as well as a meta-action; (2) selection of one to-be-eliminated candidate:

each candidate with the smallest plurality score will be eliminated from the current remaining candidates;

(3) adding back or remove one candidate from the current remaining candidates: adding one candidate to

the current remaining candidates works like an agent steps backward to the previous node (may be different

state), remove one candidate from the current remaining candidates simulates the elimination procedure

in STV election. These three action space is quite different, and dimensions are different as well. There are∑m
k=1A

k
m = 2m−1 possible actions in case (1), m possible actions in case (2), and 2m possible actions in case

(3). For different states, the valid or legal actions will be varied, e.g. there is no legal action for a leaf node

in case (2), because a leaf node may house a cowinner and the current searching path will be terminated;

the legal actions for a state in case (3) will be determined by the previously eliminated candidates and

to-be-eliminated candidates.

The valid actions for a given state should be the candidates that can be eliminated from the current set

of candidates. One action will result in the elimination of a valid candidate from the set of candidates.

However, there is a problem, when we reach at a leaf node, it does not implies a complete termination. We

have to restart from some point we have visited, and choose another path like allowing regret. Therefore,

we set the action space as: moving one step forward (eliminate one legal candidate) or moving 0 < k < m

steps backward (track backward along the trace). Therefore, the maximum number of legal actions is 2m:

adding back m possible candidates, eliminating m possible candidates. Here, we have to construct a graph,

such that each node may have multiple children and multiple parents.

To select a legal action based on the softmax prediction over all individual actions, how to define the

probability distribution over a set of individual actions. The multi-label classification algorithms may
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provide some hints.

The speedup early termination may cause a larger last step, because there are few episodes for such kinds

of episodes switching between the state without the last winner and the one with such winner.

3 Reward Function

The reward should consider whether the current set of candidates has been visited, the size of the current

set of candidates. Assuming the number of candidates ism, and the number of true co-winners is 1 ≤ k ≤m.

Let {m1,m2, · · · ,mk} be the numbers of nodes have explore to find all co-winners, and mi is the number of

nodes explored for the ith winner. There is a baseline for us to measure the performance of the searching

method. The baseline method can find a set of branches, each branch is of length at most m from up to

bottom and has one different co-winner. Therefore, the baseline method can find the ith co-winner after

visiting m ∗ i nodes, where 1 ≤ i ≤ k. Finding a new winner, i.e. the ith winner, the agent will be awarded

according to the rule

r(mi) ∝m ∗ i/mi ,

and the reward will increase as mi reduces. The reward function is independent from the effective num-

ber of candidates, and may work well. Early discovery complies with the above rule, and a reward for a

complete episode is defined as:

r(s1,a1,s2,a2, . . . ,aT ,sT ) = r̄
k∑
i=1

1
i
m ∗ i
mi

= r̄
k∑
i=1

m
mi

=mr̄
k∑
i=1

1
mi

,

where r̄ > 0 is a base reward for mi =m ∗ i.

The range of the rewarding function could be another factor that affects the performance of the agent. If the

range is too small, it fails to guide the agent to learn the difference between positive and negative actions.

If the range is too large, the feedback may disturb the performance.

Besides, the searching path for all co-winners is various for different profiles. To make a general rewarding

policy, we are considering using the ground-truth winners for each node and define the reward function

after evaluation several relationships. Suppose a state st , an action at in st are given, then the next state

st+1 will be deterministic. Assuming there are N co-winners, the existing winners are C, the true winners

for st and st+1 are Ct ,Ct+1 respectively (if we are in st and it has one remaining candidate, the candidate

has been collected into C). The action at is awarded based on: freshness (whether there is fresh winners in

Ct and Ct+1) and cost (what’s the depths of st and st+1).

There are two types of actions: positive actions and negative ones. A positive action increases the freshness,

e.g. |Ct ∩C| < |Ct+1 ∩C|. A negative action will decrease the freshness, e.g. |Ct ∩C| > |Ct+1 ∩C|. The level
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of freshness is closely related to the corresponding cost. There are several types of cost in searching, but

we concern most about is the required nodes to visited before finding a new winner. To reduce the cost, we

prefer an action that increase the freshness with as few cost as possible.

� |Ct ∩ C| > 0: a positive action is that of |Ct+1 ∩ C| > 0 and dt < dt+1; a negative action is that of

|Ct+1 ∩C|= 0. All other cases are negative.

� |Ct ∩ C| = 0: all actions that result in new winners are positive, i.e. |Ct+1 ∩ C| > 0, and the ones in

deeper layers are preferred to those in shallower layers. All other cases are negative.

Based on the above analysis, we have the following definition:

1. Case 1: |Ct ∩C|= 0

r(st ,at ,st+1) =

 (dt+1 + 1)(1+
|Ct+1∩C|

N ), |Ct+1 ∩C| > 0

−5, |Ct+1 ∩C|= 0
(1)

2. Case 2: |Ct ∩C| > 0

r(st ,at ,st+1) =


(dt+1 + 1)(1+

|Ct+1∩C|
N ), |Ct+1 ∩C| > 0 and dt+1 > dt ,

−5, |Ct+1 ∩C| > 0 and dt+1 ≤ dt
dt −m, |Ct+1 ∩C|= 0

(2)

To use a single set of hyper-parameters to solve different tasks, the rewards and the temporal difference

errors are clipped to [1,+1], because the magnitudes and frequencies of rewards vary wildly between dif-

ferent games. The approach can be called reward clipping1. However, the clipping changes the problem

that the learning agent is trying to learn and even affects the learned behaviors. (author?) 2 proposed

a adaptive target normalization to control the magnitude of each update. Especially in neural network

back-propagation, a too large update may harm learning.

Age-sensitive reward: each action has a life-span, when an action is performed, its life ends. To reduce

the steps to find all co-winners, we expect that a good action should be performed as soon as possible.

Therefore, the age of an action should also be taken into consideration when define the rewarding function.

4 Meta Action

Given m individual actions that an agent can take, the agent can take multiple actions a simultaneously,

like a robot turns left (a0 = 0, raises its right hand (a1 = 1), and smiles (a2 = 1). Let the output of the
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actor being x ∈ Rm without any activation. To make each element corresponding to one single action

being a probability in [0,1], we use the sigmoid activation function σ (xi) = 1/(1 + e−xi ) to the output.

How to produce the probability distribution over a meta-action which has at least one active individual

actions? Here, we assume that all individual actions are independent from each other, then the probability

distribution for a meta action could be the joint probability of each individual action in the given meta-

action. Suppose the actor network outputs the probability over all individual action pi = σ (xi), then the

probability of a meta action a ∈Bm could be defined as

P r(a|x) =
m∏
i=1

[paii (1− pi)
1−ai ].

The one with the highest probability will be selected to take. Equivalently, we choose the one with maxi-

mum log-likelihood

logP r(a|x) =
m∑
i=1

[ai logpi + (1− ai) log(1− pi)] =
m∑
i=1

[aixi − log(a+ exi )].

4.1 Continuous Action

Each meta action in STV actually has a unique plurality score, which could be directly used to describe the

action. If the actor can fit the plurality score perfectly, is it a better policy network?

4.2 Board Action

We create a board-like action space, with the candidates and its positional counts in the profile being the

two variables on x − y axis. Could we take advantage of method used in AlphaGo?

5 Q-Learning Method

A Markov Decision Process (MDP)3 relies on the Markov property: the probability of the next state st+1

only depends on current state st and the action at , but not on the preceding states or actions. Given an MDP

episode, i.e. a sequence of states, actions and rewards: {s0,a0,r1;s1,a1,r2; . . . ;st ,at ,rt+1; . . . ;sn−1,an−1,rn;sn},

where st ∈ S is the state of the agent at step t, at ∈ A is an action the agent takes at step t, and rt+1 is the

immediate reward that agent receives from the environment after it takes action at at state st . The state

sn is a terminal state, which indicates the termination of the agent. Given an MDP, we can calculate the

total reward R for an episode R = r1 + r2 + . . . + rn and the total future reward Rt from step t onward

Rt = rt + rt+1 + . . .+ rn. To make sure the agent can receive the immediate or near rewards, a common
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approach is to place more weights on the near rewards. Therefore, we have the discounted future reward

Rt = rt + γ
r
t+1 + γ

2rt+2 + . . .+ γ
n−trn,

where γ ∈ [0,1] is a discount factor, the more into the future the reward is, the less we take it into con-

sideration. If γ = 0, the agent is short-sighted, only relies on the immediate reward. If γ = 1, there is no

difference between the immediate reward and all future rewards. To keep a balance between the immediate

reward and future rewards, it’s commonly set 0 < γ < 1. After a rearrangement, we have

Rt = rt + γ [rt+1 + γrt+2 + . . .+ γ
n−t−1rn] = rt + γRt+1.

The discounted rewarding method reveals a greedy strategy for the agent – taking an action with a maxi-

mum discounted reward. To explicitly describe the dependence of Rt on st and at , we define the Q-value

and have the well-known Bellman equation:

Q(st ,at) = rt + γmaxRt+1 = r(st ,at ,st+1) + γ max
at+1∈A

Q(st+1,at+1).

Suppose there exists a Q-function Q(s,a) satisfying the Bellman equation. Given an environment and an

agent, Q-Learning tries to approximate the Q-function with samples. We define the simple squared error

loss function 12

L(s,a) = [(r(s,a,s′) + γmax
a′∈A

Q(a′ ,s′))−Q(s,a)]2,

and minimize it with stochastic gradient descent method and therefore iteratively approximate the Q-

function:

Q(s,a)←Q(s,a) +α[r(s,a,s′) + γmax
a′∈A

Q(s′ ,a′)−Q(s,a)],

where 0 ≤ α ≤ 1 is a learning rate, and r(s,a,s′) + γmaxa′Q(s′ ,a′) −Q(s,a) is the temporal difference (TD)

error.

For a small and simple case, a Q-table like an memoizatioin table in dynamic program- ming (DP), could

be enough to search an optimal path for the agent. When it comes to a complex situation (continuous

action space, large-scale state space), it becomes in- tractable using the tabular-like method. (author?) 1,4

in DeepMind proposed an alternative approach Deep Q-network (DQN). It implemented the Q-learning

by approximating the Q-function with a Convolutional Neural Network (CNN or ConvNet). It is a form

of Q-learning with function approximation (using a neural network), which means it tries to learn a state-

action value function Q (given by a neural network in DQN) by minimizing temporal-difference errors, i.e.

trying to make the value Q(s,a) close to r + γmaxa′Q(s′ ,a′) after observing a transition (s,a,r,s′), where

1https://www.nervanasys.com/demystifying-deep-reinforcement-learning/
2http://users.isr.ist.utl.pt/ mtjspaan/readingGroup/ProofQlearning.pdf

6



the actions can be chosen arbitrarily (the algorithm is off-policy), typically using the ε-greedy approach

based on the current Q function.

Model-free algorithms directly optimize the optimal policy or value function through algorithms such as

policy iteration or value iteration. It is much computationally efficient, but requires vast amount of training

data.

6 Policy Gradient Method

Assuming policy πθ(s,a) = P(a|s;θ) is differential whenever it’s non-zero, and the policy gradient can be

computed using a surrogate gradient

∇θπθ(s,a) = πθ(s,a)
∇θπθ(s,a)
πθ(s,a)

= πθ(s,a)∇θ logπθ(s,a),

the gradient of the likelihood function logπθ(s,a), which is also known score function, derived from the

maximum likelihood estimation (MLE).

� A softmax policy weights actions using a linear combination of features φ(s,a)T θ,and the probability

of an action is

πθ(s,a) =
exp{φ(s,a)T θ}∑
a exp{φ(s,a)T θ}

,

and the likelihood function logπθ(s,a) = φ(s,a)T θ− log
∑
a exp{φ(s,a)T θ}. The score function will be

∇θ logπθ(s,a) = φ(s,a)−
∑
a[

exp{φ(s,a)T θ}∑
a exp{φ(s,a)T θ}φ(s,a)]

= φ(s,a)−
∑
a[πθ(s,a)φ(s,a)] = φ(s,a)−Eπθ(s,·).

Intuitively, an action will move along the direction of the difference between the action feature and

the average action feature, and the scale is determined by its probability.

� A Gaussian policy in continuous actions state assumes that the action a satisfies a Normal distribu-

tion. More specifically, a ∼ N (µ(s),σ2), where mean µ(s) is defined as a linear combination of the

state features, i.e. µ(s) = φ(s)T θ, variance σ2 is fixed and can also be parametrized. The likelihood

function

logπθ(s,a) ∝ logexp{−
(a−µ(s))2

2σ2 }

and the score function is ∇θ logπθ(s,a) = (a−µ(s))φ(s)/σ2. Could we make a multivariate Gaussian

distribution to present the meta-action distribution?

Theorem 1. For any differential policy πθ(s,a) and a policy objective function

J(θ) = EπθQ
π(s,a) =

∑
s∈S

d(s)
∑
a∈A

πθ(s,a)Q
πθ (s,a),
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its policy gradient is ∇θJ(θ) = Eπθ [∇θ logπθ(s,a)×Qπθ (s,a)].

Monte-Carlo policy gradient has high variance. To reduce the variance, the most commonly used algo-

rithms are the actor-critic algorithms. The algorithms have a critic to estimate the state-action function

Q(s,a;w) ≈ Qπθ (s,a) and update parameters w, and have an actor to estimate the policy function πθ(s,a)

and update the parameters θ in direction suggested by the critic. An actor-critic algorithm follows an

approximated policy gradient

∇θJ(θ) ≈Eπθ [∇θ logπθ(s,a)Q(s,a;w)],

δθ = α∇θ logπθ(s,a)Q(s,a;w),

while the critic network is updated as in Q learning (temporal difference). To improve the stability of the

training, both Experience Replay and Target Network can be employed. Here the actor is a stochastic policy.

Another policy is deterministic policy network, where a= µ(s;θ). Given a state, the action is deterministic.

The policy objective function is defined as

J(θ) = Er∼P (r |θ)Q(s,a) = Er∼P (r |θ)Q(s,µ(s;θ)),

and the policy gradient is ∇θJ(θ) = Er∼P (r |θ [∇aQ(s,a)×∇θµ(s;θ)]. We will introduce a deep reinforcement

learning algorithm in the following sections, which coins Deep Deterministic Policy Gradients (DDPG)5,6.

6.1 Policy Network

The PG method directly learns a policy function (instead of a Q-function) and are typically on-policy,

meaning you need to learn from trajectories generated by the current policy. One way to learn an approxi-

mation policy is by directly maximizing expected reward using gradient methods, hence "policy gradient"

(the gradient of the expected reward w.r.t. the parameters of the policy can be obtained via the policy

gradient theorem for stochastic policies, or the deterministic policy gradient theorem5 for deterministic

policies).

During training, the network can be used to sample an action according to the predicted probability distri-

bution. When evaluated, the action in a state is deterministic, the one with the highest probability will be

selected.

6.2 Stochastic policy gradient

6.3 Deterministic policy gradient

The deterministic policy gradient is the expected gradient of the action-value function5.
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6.4 Experience Replay

Experience replay keeps a specific number of visited episodes {s,a,r,s′}, and updates the network in batch

with samples from the replay memoryD. The model is trained to minimize the average temporal difference

errors

L(s,a;θ) = E(s,a,r,s′)∼D [r(s,a,s) + γmax
a′
Q(a′ ,s′)−Q(s,a)]2,

making the predicted action-value Q(s,a) close to the target value r(s,a,s′)+γmaxa′Q(a′ ,s′). Both the ex-

perience replay and the target network are two effective approaches to improve the stability of the training.

Fig. 1: DQN with experience replay

6.5 Target Network

The non-linear neural network Q-value function is not stable. To resolve the problem, DeepMind team

proposed to use a target network: cloning the actor and critic networks, and using them as the target

networks to computing the target values. After frozen for a specific number of steps, the target networks

are updated in very smooth pattern:

θ′← τθ+ (1− τ)θ′ ,
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where θ′ is the weight vector of the target network and θ is the weight vector of the actor or critic network,

and the update factor τ � 1 ensures the change of the network is subtle and effectively improve the stability

of the training. We have derived that

Er∼P (r |θ)[∇aQ(s,a)×∇θµ(s;θ)],

therefore the update of the actor network depends on two components: ∇aQ(s,a) and ∇θµ(s;θ). The first

term is computed from the critic network and the second one comes from the actor network itself, both

require the predicted action from the actor network from the current state.

We have the weights of the actor and the critic network, then we can update the target networks

critic’s target network : θQ
′ ← τθQ + (1− τ)θQ′ ,

actor’s target network : θµ
′ ← τθµ+ (1− τ)θµ′ .

7 Actor-Critic Method

7.1 A3C

Asynchronous Advantage Actor-Crtic (A3C, (author?) 7 ) is different from DQN, it has a global network,

and multiple subnetworks, each of them is trained independently by interacting with the environment.

A3C performs better and learns more efficiently than DQN.

7.2 UNREAL

UNsupervised REinforcement and Auxiliary Learning (UNREAL, (author?) 8 ) learned additional auxiliary

tasks to improve the performance of the actor.

7.3 Ensemble in Reinforcement Learning

(author?) 9 proposed to strengthen reinforcement learning across environments with the assistances from

ensemble learning techniques.

8 AlphaGo

AlphaGo5 is a combination of Monte Carlo Tree Search (MCTS) and machine learning (supervised and

reinforcement learning). MCTS is an alternative approach to brute force and heuristic search. It runs many
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game simulations starting at the current game state until the game is over. The simulations keeps trace

some values, e.g. the number of time a new state is visited, the chance to win. The more simulations are

executed, the more accurate a selection leading to a winning. It’s proved that, as the number of simulations

increases, MCTS leads to an optimal play.

The advantage for MCTS is no requirement in domain knowledges to play the game. But, it suffers from

the exploration-exploitation tradeoff. To achieve a good result, it relies on large number of simulations. It

seems both MCTS and hand-crafted rules are necessary.

Fig. 2: Architecture of AlphaGo5

8.1 SL Policy Network

An SL policy network pσ (a|s) tries to predict experts’ moves. The input of SL policy network is a simple

representation of the board position, and the output is an action (a 19 × 19 Go board, i.e. a binary vector of

361 dimensions10). It’s a classical classification problem, and trained using sampled position-move pairs

(s,a) from human played games. The surrogate loss function is a cross entropy (CE) function

L(s,a;σ ) = −
∑
a

I(s,a) logpσ (a|s),

where I(s,a) ∈ {0,1} is an indicator, shows whether a human player takes action a in state s. Using stochastic

gradient descent approach to minimize CE loss is equivalent to maximize the likelihood of an expert move

a in state s,

∆σ = ∇σ logpσ (a|s).

The SL policy network pσ (a|s) has 13 layer, including 12 convolutional layers and one soft- max output

layer, which indicates the probability distribution over all legal moves. Also, a fast policy network pπ(a|s)
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is modeled as a linear softmax of a smaller set of board features. It’s the rollout policy network for rapidly

sampling actions during rollouts. Both policy networks are move-predictor, mimicking human players’

moves. But there is a large uncharted territory that a human may fail to explore. To explore fresh strategies

and obtain an enhanced policy network, the SL policy network pσ (a|s) is improved further based on the

policy gradient reinforcement learning algorithm. The reinforcement learning algorithm is trained using

the self-played games between the current RL policy network and a randomly sampled version in previous

iteration.

8.2 RL Policy Network

A RL policy network pρ(a|s) with the same structure as the SL policy network pρ(a|s) is built, and initialized

using pρ(a|s)’s weights, i.e. ρ = σ . A reward function is defined for RL network as follows

rt = r(st) =


0, t < T for both,

+1, t = T for winner,

−1, t = T for loser.

The outcome zt = r(sT ) = ±1 is the terminal reward of the player in current state st (note: the reward rt

is difference from the outcome zt). The weight vector ρ is updated with the stochastic gradient descent

method to maximize the expected outcome,

∆ρ =
α
n

n∑
i=1

T∑
t=1

∇ρ logpρ(a
i
t |sit)× zit ,

where n is the size of mini-batch, and a game will be played until the end for each batch.

8.3 Value Network

To evaluate a position, we estimate a value function vp(s) that predicts the reward from position s of the

game following policy p,

vp(s) = E[zt |st = s,at···T ∼ p].

If a perfect policy is known p∗(a|s), we would like to know the optimal value function v∗(s) under the

perfect policy. In practice, we estimate the value function vpρ (s) with the stronger RL policy network

pρ(a|s). Further, a value network vθ(s) with weight vector θ is built to approximate the value function

vpρ (s), i.e.

vθ(s) ≈ vpρ (s) ≈ v∗(s).

The output of the value network is a single value rather than a probability distribution.
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The successive positions in a Go game are strongly correlated, differing by just one stone and sharing a

same target reward. To avoid overfitting for using a complete game to train the value network. AlphaGo

samples 30 millions distinct positions, each sampled from a separated self-played game. The algorithm

generates a game with the following phrases:

� Sampling a time step u ∼ U (1,450), and all actions at before u, i.e. at ∼ pσ (·|st) (where the initial

state come from?), where t < u

� Sampling an available action au ∼U (1,361), repeatedly until au is legal

� Sampling a sequence of actions {au+1, · · · ,aT } until the end of the game, at ∼ pρ(·|st), where u + 1 ≤

t ≤ T

� Obtain the game outcome zu+1 = r(sT ) at the end of the game

� A single date entry (su+1,zu+1) is collected from the above self-played game, and it’s an unbiased

sample of the value function vpρ (su+1) = E[zu+1|su+1,au+1, · · · ,T ∼ pρ]

Suppose there are m state-outcome pairs {si ,zi}mi=1 in the training set. The stochastic gradient descent

method is used to minimize a mean-squared error (MSE) between the predicted value and the target out-

come

∆θ =
α
m

m∑
i=1

[(zi − vθ(si))∇θvθ(si)].

8.4 Searching with Policy and Value Networks

AlphaGo combines the policy networks and the value networks in an MCTS algorithm that selects actions

by lookahead search. Before we dive into the AlphaGo MCTS algorithm, we have a brief introduction of

the general MCTS algorithm, which may be helpful to understand the following sections.

8.5 MCTS

Before (author?) 11 invented MCTS, the most popular tree search algorithm is Minimax alpha-beta prun-

ing. It works very well when the branching factor is small and we have a good heuristic function. If the

branching factor is large, it will be intractable to use the Minimax. Especially in most complex game, we

do not have a good heuristic to search the game tree. MCTS is created for these issues, and its biggest

advantage is no reliance on the prior knowledge of the game. There are four stages in MCTS: selection,

expansion, simulation and back propagation, as indicated in Fig. 3.
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Fig. 3: Outline of MCTS11

� Selection: it is an in-tree search phrase, traverses the game tree from the root node. When a node

has children, it requests to select an optimal one based on a tree policy or the stored statistics in each

node.

� Expansion: when it reaches a leaf node, the search algorithm may step into the node and expand it. It

will branch the node and produce one or more children and select one to visit. (A leaf node contains

at least one child that has never been visited; a terminal node is the end of the entire game.)

� Simulation: when a child of a leaf node is selected, it’s a new root node, and the search will randomly

select legal actions until reaches a terminal node.

� Back-propagation: the game result at the terminal node is back-propagated along the searching path

until the root node, and nodes’ statistics (e.g. number of visits, win rate) will be updated accordingly.

The whole procedure will be repeated multiple times. As the number of simulations increases, the statistics

about the game will become more and more accurate.

8.5.1 MCTS in AlphaGo

Each node s in the search tree contains edges (s,a) for all legal actions a ∈ A(s). Each edge keeps track of the

statistics: the action-valueQ(s,a), visit countN (s,a), and prior probability P (s,a), which is estimated using

the SL policy network, i.e. P (s,a) = pρ(a|s). More specifically, the visited count contains two components,

one for the leaf evaluation, another one for the rollout rewards. Therefore, it contains Wv(s,a) and Wr(s,a)
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the Monte-Carlo estimates of the total action-value, accumulated over Nv(s,a) and Nr(s,a) leaf evaluations

and rollout rewards, respectively. The action-value Q(s,a) is a weighted average of the two estimates.

The MCTS algorithm in AlphaGo is the same as the general MCTS, contains four stages: selection, expan-

sion, evaluation, and backup, as indicated in Fig. 4.

Fig. 4: MCTS in AlphaGo

8.5.2 Selection

Each simulation starts from the root node of the search tree and finishes when it reaches a leaf node at

depth L. At each time step t < L, an action is selected based on the statistics at = argmaxa[Q(st ,a) + u(st ,a)],

u(s,a) = cpuctP (s,a)
√∑

bNr (s,b)
1+Nr (s,a)

,

where the constant cpuct > 0 determines the level of exploration. The search strategy prefers the actions

with high prior probability and low visit count. As the simulation goes on, it asymptotically prefers actions

with high action-value.

8.5.3 Expansion

When the visit count Nr(s,a) of an edge (s,a) exceeds a threshold, e.g. Nr(s,a) > nr (may be dynamically

changed), the successor node s′ is added to the search tree (even an edge (s,a) goes out of the node s has

been visited for many times in the rollouts, it’s still possible that the edge is not in the search tree). The
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statistics of the out-edges of the new state are initialized as

Nv(s
′ ,a) = Nr(s

′ ,a) = 0,

Wv(s
′ ,a) =Wr(s

′ ,a) = 0,

Q(s′ ,a) = 0,

P (s′ ,a) = p
β
σ (a|s′),

where β is the softmax temperature of the SL policy network.

8.5.4 Evaluation

The leaf node sL is evaluated by the value-network vθ(s), unless it has been evaluated in previous simula-

tions. The rollout phrase in each simulation starts at sL until the end of the game. At each time-step t ≥ L,

an action is selected according to the rollout policy network, i.e. at ∼ pπ(·|st). At the end of the game, the

outcome zt can be computed.

8.5.5 Backup

At the end of the simulation, the rollout statistics are updated in a backward pass through each in-tree time

step t ≤ L,

Nr(st ,at) ←Nr(st ,at) + 1,

Wr(st ,at) ←Wr(st ,at) + zt .

Another backward propagation is performed to update the value statistics, after the evaluation vθ(sL) of

the leaf sL,

Nv(st ,at) ←Nv(st ,at) + 1,

Wv(st ,at) ←Wv(st ,at) + vθ(sL).

The overall average action-value Q(s,a) is updated as the weighted average of the Monte-Carlo estimates

on rollout rewards and leaf evaluation, i.e.

Q(s,a) = (1−λ)
Wv(s,a)
Nv(s,a)

+λ
Wr(s,a)
Nr(s,a)

,

where λ ∈ [0,1] keeps a balance between the leaf evaluations and the rollout rewards in the simulations.

It’s a kind of exploration-exploitation tradeoff, where the leaf evaluation gives the signal of exploration

(simulators repeatedly kicked the boundary of the search tree), and the rollout rewards of exploitation

level (in-tree search limited in the charted territory).

To make the explanation clear, we introduce the initial several steps from the perspective of one simulator:
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� Evaluation: when one player places the first stone, a root node s1 is added to the search tree. Sup-

pose one simulator starts to simulate from sL = s1, initializing the statistics {Nv(s1,a) = Nr(s1,a) =

0,Wv(s1,a) =Wr(s1,a) = 0,Q(s1,a) = 0} for all legal actions a of s1. It evaluates the state-value vθ(s)

of the leaf node (other available simulators may have already evaluated it). After the evaluation,

it starts to rollout according to the rollout policy network pπ(a|s) until the end of the game. The

corresponding game results will be computed in the simulation.

� Backup: all statistics of the out-edges of the root node will be collected from available simulators and

updated or computed.

� Expansion: suppose one legal action a1 of s1 has its rollout visit count larger than the threshold

nr , the new node s2 will be added into the search tree, and initialized with {Nv(s2,a) = Nr(s2,a) =

0,Wv(s2,a) =Wr(s2,a) = 0,Q(s2,a) = pσβ(a|s)}.

� Selection: the simulator starts the simulation at the root node until reaches the leaf node sL in the

search tree. At each time step t < L, it selects the action according to at = argmaxa[Q(st ,a)+u(st ,a)].

� Together with other simulators, the above steps are repeatedly executed, the related statistics are

updated with the helps of the SL policy network pσ (a|s), the rollout policy network pπ(a|s) and the

value network vθ(s). The player could be guided with the asymptotically accurate statistics to make

another move.

� Starting from the new state after the suggested move, all simulations are repeated again until the end

of the game.

The strong RL policy network pρ(a|s) is not utilized explicitly in AlphaGo’s MCTS, the reason lies at the fact

that the SL policy network pσ (a|s) learned from expert moves is much more diverse in strategies and very

suitable for the tree search in MCTS. Meanwhile, the state-value network vθ(s) learned from the self-played

games sampled using pρ(a|s) has a better generalization and presents its implicit power as well.

Also, when the stochastic policy networks pσ (a|s) and pπ(a|s) predict the probability distribution over

actions. The illegal actions may harvest the highest probabilities. There- fore, it requires a renormalization

to redistribute the probabilities of these illegal moves to the legal ones12 to produce accurate predictions.
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